Contrasting simulated past and future responses of the Amazonian forest to atmospheric change.
نویسندگان
چکیده
Modelling simulations of palaeoclimate and past vegetation form and function can contribute to global change research by constraining predictions of potential earth system responses to future warming, and by providing useful insights into the ecophysiological tolerances and threshold responses of plants to varying degrees of atmospheric change. We contrasted HadCM3LC simulations of Amazonian forest at the last glacial maximum (LGM; 21 kyr ago) and a Younger Dryas-like period (13-12 kyr ago) with predicted responses of future warming to provide estimates of the climatic limits under which the Amazon forest remains relatively stable. Our simulations indicate that despite lower atmospheric CO2 concentrations and increased aridity during the LGM, Amazonia remains mostly forested, and that the cooling climate of the Younger Dryas-like period in fact causes a trend toward increased above-ground carbon balance relative to today. The vegetation feedbacks responsible for maintaining forest integrity in past climates (i.e. decreased evapotranspiration and reduced plant respiration) cannot be maintained into the future. Although elevated atmospheric CO2 contributes to a positive enhancement of plant carbon and water balance, decreased stomatal conductance and increased plant and soil respiration cause a positive feedback that amplifies localized drying and climate warming. We speculate that the Amazonian forest is currently near its critical resiliency threshold, and that even minor climate warming may be sufficient to promote deleterious feedbacks on forest integrity.
منابع مشابه
The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming
A suite of simulations with the HadCM3LC coupled climate-carbon cycle model is used to examine the various forcings and feedbacks involved in the simulated precipitation decrease and forest dieback. Rising atmospheric CO2 is found to contribute 20% to the precipitation reduction through the physiological forcing of stomatal closure, with 80% of the reduction being seen when stomatal closure was...
متن کاملResponses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum.
The aims of this paper are to review previously published palaeovegetation and independent palaeoclimatic datasets together with new results we present from dynamic vegetation model simulations and modern pollen rain studies to: (i) determine the responses of Amazonian ecosystems to changes in temperature, precipitation and atmospheric CO2 concentrations that occurred since the last glacial max...
متن کاملSimulating Water-Use Efficiency of Piceacrassi folia Forest under Representative Concentration Pathway Scenarios in the Qilian Mountains of Northwest China
The current study used the Biome-Bio Geochemical Cycle (Biome-BGC) model to simulate water-use efficiency (WUE) of Piceacrassi folia (P. crassifolia) forest under four representative concentration pathway (RCP) scenarios, and investigated the responses of forest WUE to different combinations of climatic changes and CO2 concentrations in the Qilian Mountains of Northwest China. The model was val...
متن کاملکاربرد مدل تلفیقی سلولهای خودکار و زنجیرۀ مارکوف در شبیهسازی الگوی مکانی- زمانی تغییر پوشش جنگلی (مطالعه موردی: شهرستان ملکشاهی - استان ایلام)
In order to optimize the planning and management of natural resources and the environment, it is essential to know the status of land cover changes over the past decades. Modeling land cover change can provide valuable information for better understanding of this process, determining of effective factors and forecasting of regions subject to change. This study aimed to determine and simulate th...
متن کاملEstimation and Analysis of Caspian Region's Future Rainfalls by Using General Atmospheric Circulation Models.
In recent years, the severe fluctuations in precipitation have affected various parts of the country. On the southern coasts of the Caspian Sea, precipitation as one of the important climatic parameters has undergone changes due to global climate change. In the present study, we tried to evaluate the effect of climate change on rainfall in this region by applying a suitable model. In this study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 359 1443 شماره
صفحات -
تاریخ انتشار 2004