Approximation Algorithms for 2-Means Clustering

نویسنده

  • Margareta Ackerman
چکیده

Clustering is a global approach to information classification, with applications in data mining, pattern recognition, image processing, bioinformatics, city planning, and more. Clustering is the partition of data into meaningful groups. Since the concept of “meaningful groups” varies widely among applications, there is a wide variety of clustering techniques. Broadly, these techniques can be categorized as linkage-based clustering, spectral clustering, and clustering with respect to an objective function. In this report, we focus on a specific instance of the latter category. K-means clustering is probably the most commonly used clustering technique that aims to minimize an objective function. Its popularity is probably due to its simplicity and flexibility. The optimal k-means clustering does not place bounds on the number of points in a cluster, does not restrict the radii of clusters, and allows points in a cluster to center around a point that is not part of the input. Additionally, the Lloyd algorithm is a simple and fast heuristic for solving k-means, although it does not have any performance guarantees.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact algorithms for solving a bi-level location–allocation problem considering customer preferences

The issue discussed in this paper is a bi-level problem in which two rivals compete in attracting customers and maximizing their profits which means that competitors competing for market share must compete in the centers that are going to be located in the near future. In this paper, a nonlinear model presented in the literature considering customer preferences is linearized. Customer behavior ...

متن کامل

Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories

In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

Approximation Algorithms for Bregman Clustering Co-clustering and Tensor Clustering

The Euclidean K-means problem is fundamental to clustering and over the years it has been intensely investigated. More recently, generalizations such as Bregman k-means [8], co-clustering [10], and tensor (multi-way) clustering [40] have also gained prominence. A well-known computational difficulty encountered by these clustering problems is the NP-Hardness of the associated optimization task, ...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007