Quasi-Newton acceleration of ILU preconditioners for nonlinear two-phase flow equations in porous media

نویسندگان

  • Luca Bergamaschi
  • Rafael Bru
  • Angeles Martinez
  • Mario Putti
چکیده

In this work, preconditioners for the iterative solution by Krylov methods of the linear systems arising at each Newton iteration are studied. The preconditioner is defined by means of a Broyden-type rank-one update of a given initial preconditioner, at each nonlinear iteration, as described in [5] where convergence properties of the scheme are theoretically proved. This acceleration is employed in the solution of the nonlinear system of algebraic equations arising from the Finite Element discretization of two-phase flow model in porous media. We report numerical results of the application of this approach when the initial preconditioner is chosen to be the incomplete LU decomposition of the Jacobian matrix at the initial nonlinear stage. It is shown that the proposed acceleration reduces the number of linear iterations needed to achieve convergence. Also, the cost of computing the preconditioner is reduced as this operation is made only once at the beginning of the Newton iteration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Homotopy Perturbation Method to Nonlinear Equations Describing Cocurrent and Countercurrent Imbibition in Fractured Porous Media

  In oil industry, spontaneous imbibition is an important phenomenon in recovery from fractured reservoirs which can be defined as spontaneous uptake of a wetting fluid into a porous solid. Spontaneous imbibition involves both cocurrent and countercurrent flows. When a matrix block is partially covered by water, oil recovery is dominated by cocurrent imbibition i.e. the production of non wettin...

متن کامل

Comparison of iterative methods and preconditioners for the solution of miscible two-phase flow in heterogeneous porous media

After discretization in time with the implicit Euler method and in space with the Box method (c.f. [2]), we end up with a nonlinear system of equations. Newton’s method is used to solve these systems, where the required Jacobians are obtained by automatic differentiation (AD) (c.f. [3]). In contrast to approximate Jacobians via finite differences, AD gives exact Jacobians through a source code ...

متن کامل

An Approximate Jacobian Nonlinear Solver for Multiphase Flow and Transport

We present an approximate Jacobian approach for solving nonlinear, multiphase flow and transport problems in porous media. A backward Euler time discretization scheme is used; prior to spatial discretization with a lowest order mixed finite element method (MFEM). This results in a fully implicit nonlinear algebraic system of equations. Conventionally, an exact Jacobian construction is employed ...

متن کامل

Comparison of Thermal Dispersion Effects for Single and two Phase Analysis of Heat Transfer in Porous Media

The present work involves numerical simulation of a steady, incompressible forcedconvection fluid flow through a matrix of porous media between two parallel plates at constanttemperature. A Darcy model for the momentum equation was employed. The mathematical model forenergy transport was based on single phase equation model which assumes local thermal equilibriumbetween fluid and solid phases. ...

متن کامل

New updates of incomplete LU factorizations and applications to large nonlinear systems

In this paper, we address the problem of preconditioning sequences of large sparse nonsymmetric systems of linear equations and present two new strategies to construct approximate updates of factorized preconditioners. Both updates are based on the availability of an incomplete LU (ILU) factorization for one matrix of the sequence and differ in the approximation of the so-called ideal updates. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in Engineering Software

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2012