An Integrated Mathematical Model of Microbial Fuel Cell Processes: Bioelectrochemical and Microbiologic Aspects"2279

نویسندگان

  • Andrea G. Capodaglio
  • Daniele Cecconet
  • Daniele Molognoni
چکیده

Microbial Fuel Cells (MFCs) represent a still relatively new technology for liquid organic waste treatment and simultaneous recovery of energy and resources. Although the technology is quite appealing due its potential benefits, its practical application is still hampered by several drawbacks, such as systems instability (especially when attempting to scale-up reactors from laboratory prototypes), internally competing microbial reactions, and limited power generation. This paper is an attempt to address some of the issues related to MFC application in wastewater treatment with a simulation model. Reactor configuration, operational schemes, electrochemical and microbiological characterization, optimization methods and modelling strategies were reviewed and have been included in a mathematical simulation model written with a multidisciplinary, multi-perspective approach, considering the possibility of feeding real substrates to an MFC system while dealing with a complex microbiological population. The conclusions drawn herein can be of practical interest for all MFC researchers dealing with domestic or industrial wastewater treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formulation And Preliminary Application Of An Integrated Model Of Microbial Fuel Cell Processes

Microbial Fuel Cells (MFCs) are bioelectrochemical systems that directly convert chemical energy contained in organic matter bioconvertible substrate into electrical energy. Since the mid-90’s, researchers have attempted to simulate the bioelectrochemical activity of MFCs: in this paper, in order to develop an enhanced model capable of describing a complex bacterial community, such as that of a...

متن کامل

A Review of Modeling Bioelectrochemical Systems: Engineering and Statistical Aspects

Bioelectrochemical systems (BES) are promising technologies to convert organic compounds in wastewater to electrical energy through a series of complex physical-chemical, biological and electrochemical processes. Representative BES such as microbial fuel cells (MFCs) have been studied and advanced for energy recovery. Substantial experimental and modeling efforts have been made for investigatin...

متن کامل

Modeling of Multi-population Microbial Fuel and Electrolysis Cells Based on the Bioanode Potential Conditions

Microbial fuel cell and microbial electrolysis cell are two major types of microbial electrochemical cells. In the present study, we governed modeling of these systems by concentrating on the simulation of bioelectrochemical reactions in both biofilm and anolyte and considering the effect of pH on the microbial growth. The simulation of microbial fuel and electrolysis cells can be described by ...

متن کامل

Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production.

An integrated photobioelectrochemical (IPB) system was developed by installing a microbial fuel cell (MFC) inside an algal bioreactor. This system achieves the simultaneous removal from a synthetic solution of organics (in the MFC) and nutrients (in the algal bioreactor), and the production of bioenergy in electricity and algal biomass through bioelectrochemical and microbiological processes. D...

متن کامل

Comparison of Conduction Based and Mediator Based Models for Microbial Fuel Cells

Microbial fuel cells (MFCs) are processes used for simultanuous bioenergy capturing and waste treatment. In this study, a model for MFCs based upon a conduction mechanism for electron transfer is proposed, which integrates substrate utilization, current production and conduction and  microbial distribution and growth in batch flow mode. The outputs of the model and that of a mediator based mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017