Resolvent Estimates with Mild Trapping
نویسنده
چکیده
We discuss recent progress in understanding the effects of certain trapping geometries on cut-off resolvent estimates, and thus on the qualititative behavior of linear evolution equations. We focus on trapping that is unstable, so that strong resolvent estimates hold on the real axis, and large resonance-free regions can be shown to exist beyond it.
منابع مشابه
Non-trapping Estimates near Normally Hyperbolic Trapping
In this paper we prove semiclassical resolvent estimates for operators with normally hyperbolic trapping which are lossless relative to nontrapping estimates but take place in weaker function spaces. In particular, we obtain non-trapping estimates in standard L2 spaces for the resolvent sandwiched between operators which localize away from the trapped set Γ in a rather weak sense, namely whose ...
متن کاملSemiclassical Resolvent Estimates for Trapping Perturbations
We study the semiclassical estimates of the resolvent R(+ ii); 2 J R + ; 2]0;1] of a self-adjoint operator L(h) in the space of bounded operators L(H 0;s ; H 0;?s); s > 1=2. In the general case of long-range trapping "black-box" perturbations we prove that the estimate of the cut-oo resolvent k(x)R(+i0)(x)k H!H C exp(Ch ?p); (x) 2 C 1 0 (R n); p 1 implies the estimate kR(+ ii)k s;?s C 1 exp(C 1...
متن کاملDistribution of resonances for manifolds with hyperbolic ends
Distribution of resonances for manifolds with hyperbolic ends by Kiril Datchev Doctor of Philosophy in Mathematics University of California, Berkeley Professor Maciej Zworski, Chair Quantum decay rates appear as imaginary parts of resonances, or poles of the meromorphic continuation of the resolvent of the Laplacian. As energy grows, decay rates are related to properties of geodesic flow and to...
متن کاملAnalytic Continuation and Semiclassical Resolvent Estimates on Asymptotically Hyperbolic Spaces
In this paper we construct a parametrix for the high-energy asymptotics of the analytic continuation of the resolvent on a Riemannian manifold which is a small perturbation of the Poincaré metric on hyperbolic space. As a result, we obtain non-trapping high energy estimates for this analytic continuation.
متن کاملCutoff Resolvent Estimates and the Semilinear Schrödinger Equation
This paper shows how abstract resolvent estimates imply local smoothing for solutions to the Schrödinger equation. If the resolvent estimate has a loss when compared to the optimal, non-trapping estimate, there is a corresponding loss in regularity in the local smoothing estimate. As an application, we apply well-known techniques to obtain well-posedness results for the semi-linear Schrödinger ...
متن کامل