Phosphorylation energy and nonlinear kinetics as key determinants for G2/M transition in fission yeast cell cycle

نویسندگان

  • Teng Wang
  • Jian Zhao
  • Qi Ouyang Hong Qian
  • Yu V. Fu
  • Fangting Li Peking University
  • Beijing
  • Chinese Academy of Sciences
  • University of Washington
  • Seattle
چکیده

The living cell is an open nonequilibrium biochemical system, where ATP hydrolysis serves as the energy source for a wide range of intracellular processes including the assurance for decision-making. In the fission yeast cell cycle, the transition from G2 phase to M phase is triggered by the activation of Cdc13/Cdc2 and Cdc25, and the deactivation of Wee1. Each of these three events involves a phosphorylation-dephosphorylation (PdP) cycle, and together they form a regulatory circuit with feedback loops. Almost all quantitative models for cellular networks in the past have invalid thermodynamics due to the assumption of irreversible enzyme kinetics. We constructed a thermodynamically realistic kinetic model of the G2/M circuit, and show that the phosphorylation energy ( G ∆ ), which is determined by the cellular ATP/ADP ratio, critically controls the dynamics and the bistable nature of Cdc2 activation. Using fission yeast nucleoplasmic extract (YNPE), we are able to experimentally verify our model prediction that increased G ∆ , being synergistic to the accumulation of Cdc13, drives the activation of Cdc2. Furthermore, Cdc2 activation exhibits bistability and hysteresis in response to changes in phosphorylation energy. These findings suggest that adequate maintenance of phosphorylation energy ensures the bistability and robustness of the activation of Cdc2 in the G2/M transition. Free energy might play a widespread role in biological decision-making processes, connecting thermodynamics with information processing in biology. E. Schrödinger first suggested that living organisms require negative entropy flux to create and maintain order (1). From a thermodynamic perspective, the nonequilibrium nature and free energy input are indispensable for living organisms (2,3). Beyond the traditional view that free energy is consumed to carry out processes like biosynthesis, ionic pumping, or mechanical movements (2), the recent phosphorylation energy hypothesis rationalizes that free energy is a necessary component of nonlinear

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HIV-1 VPR modulates cell cycle G2/M transition through an alternative cellular mechanism other than the classic mitotic checkpoints.

HIV-1 Vpr induces cell cycle G2/M arrest in both human and fission yeast cells, suggesting a highly conserved activity of this viral protein. In this review, we summarize the current understanding of Vpr-induced G2 arrest based on studies from both mammalian cells and the fission yeast (Schizosaccharomyces pombe) model system. Fission yeast has proven to be an excellent model system to investig...

متن کامل

Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions.

All events of the fission yeast cell cycle can be orchestrated by fluctuations of a single cyclin-dependent protein kinase, the Cdc13/Cdc2 heterodimer. The G1/S transition is controlled by interactions of Cdc13/Cdc2 and its stoichiometric inhibitor, Rum1. The G2/M transition is regulated by a kinase-phosphatase pair, Wee1 and Cdc25, which determine the phosphorylation state of the Tyr-15 residu...

متن کامل

The G1-S checkpoint in fission yeast is not a general DNA damage checkpoint.

Inhibitory mechanisms called checkpoints regulate progression of the cell cycle in the presence of DNA damage or when a previous cell-cycle event is not finished. In fission yeast exposed to ultraviolet light the G1-S transition is regulated by a novel checkpoint that depends on the Gcn2 kinase. The molecular mechanisms involved in checkpoint induction and maintenance are not known. Here we cha...

متن کامل

Phosphorylation potential and chemical fluxes govern the biological performance of multiple PdP cycles

Fission yeast G2/M transition is regulated by a biochemical reaction networks which contains four components: Cdc13, Cdc2, Wee1, and Cdc25. This circuit is characterized by the ultrasensitive responses of Wee1 or Cdc25 to Cdc13/Cdc2 activity, and the bistability of Cdc2 activation. Previous work has shown that this bistability is governed by phosphorylation energy. In this article, we developed...

متن کامل

Dynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model

Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016