Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control
نویسندگان
چکیده
Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented.
منابع مشابه
Introduction to Special NIST Journal of Research Issue on Additive Manufacturing
Additive manufacturing (AM) or “3D-printing,” which is another term often used to describe all additive manufacturing processes but is in fact just a subset of AM technologies, has received substantial and rapidly growing attention in recent years in both the popular press and in technical publications. Phrases like “make anything at any time,” “art to part,” and “complexity is free,” along wit...
متن کاملNew-emerging approach for fabrication of near net shape aluminum matrix composites/nanocomposites: Ultrasonic additive manufacturing
Recently, high-performance lightweight materials with outstanding mechanical properties have opened up their way to some sophisticated industrial applications. As one of these systems, aluminum matrix composites/nanocomposites (AMCs) offer an outstanding combination of relative density, hardness, wear resistance, and mechanical strength. Until now, several additive manufacturing methods have be...
متن کاملModeling of Weld Bead Geometry Using Adaptive Neuro-Fuzzy Inference System (ANFIS) in Additive Manufacturing
Additive Manufacturing describes the technologies that can produce a physical model out of a computer model with a layer-by-layer production process. Additive Manufacturing technologies, as compared to traditional manufacturing methods, have the high capability of manufacturing the complex components using minimum energy and minimum consumption. These technologies have brought about the possibi...
متن کاملInvestigating of Process Design Parameters in 4043 alloy Additive Manufactured specimens, to create external features of cylinder head
In Wire and Arc Additive Manufacturing (WAAM), a 3D object is created from small material sectors,. It usually adds layers of material continuously to produce the final shape. The challenges facing additive manufacturing methods for functional or mass production parts, are still complex geometries, used materials, quality of manufactured components, cycle time and cost. The solubility of hydrog...
متن کاملMetal Based Additive Layer Manufacturing: Variations, Correlations and Process Control
Additive layer manufacturing is emerging as the next generation in part manufacture. It is being adopted by aerospace, tool making, dental and medical industries to produce and develop new conceptual designs and products due to its speed and flexibility. It has been noted that parts produced using additive layer manufacturing are not to a consistent quality. Variations have been recorded showin...
متن کامل