Complex Multiplication Structure of Elliptic Curves

نویسنده

  • H. W. Lenstra
چکیده

Let k be a finite field and let E be an elliptic curve over k. In this paper we describe, for each finite extension l of k, the structure of the group E(l) of points of E over l as a module over the ring R of endomorphisms of E that are defined over k. If the Frobenius endomorphism ? of E over k does not belong to the subring Z of R, then we find that E(l)$R R(?&1), where n is the degree of l over k; and if ? does belong to Z then E(l) is, as an R-module, characterized by E(l) E(l )$R R(?&1). The arguments used in the proof of these statements generalize to yield a description of the group of points of an elliptic curve over an algebraically closed field as a module over suitable subrings of the endomorphism ring of the curve. It is shown that straightforward generalizations of the results of this paper to abelian varieties of dimension greater than 1 cannot be expected to exist. 1996 Academic Press, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Curves with Complex Multiplication and the Conjecture of Birch and Swinnerton-Dyer

1. Quick Review of Elliptic Curves 2 2. Elliptic Curves over C 4 3. Elliptic Curves over Local Fields 6 4. Elliptic Curves over Number Fields 12 5. Elliptic Curves with Complex Multiplication 15 6. Descent 22 7. Elliptic Units 27 8. Euler Systems 37 9. Bounding Ideal Class Groups 43 10. The Theorem of Coates and Wiles 47 11. Iwasawa Theory and the “Main Conjecture” 50 12. Computing the Selmer G...

متن کامل

Non-elliptic Shimura Curves of Genus One

We present explicit models for non-elliptic genus one Shimura curves X0(D, N) with Γ0(N)-level structure arising from an indefinite quaternion algebra of reduced discriminant D, and Atkin-Lehner quotients of them. In addition, we discuss and extend Jordan’s work [10, Ch. III] on points with complex multiplication on Shimura curves.

متن کامل

Generating Elliptic Curves over Finite Fields Part I: Generating by Complex Multiplication

We study the theory of rational points on elliptic curves over nite elds and the theory of complex multiplication through which we construct elliptic curves over F p such that their orders of the group of rational points over F p are of the form mr where r is a prime and m is a small integer.

متن کامل

Remark on the rank of elliptic curves

A covariant functor on the elliptic curves with complex multiplication is constructed. The functor takes values in the noncommutative tori with real multiplication. A conjecture on the rank of an elliptic curve is formulated.

متن کامل

Torsion Points on Elliptic Curves with Complex Multiplication

i.e., the supremum of all orders of torsion points on elliptic curves defined over some degree d number field. Write T (d)′ for the set of prime divisors of elements of Td, and P (d) for the largest element of T (d)′. Let TCM(d) (resp. TIM(d)) be the subset of T (d) corresponding to elliptic curves with complex multiplication (resp. with algebraic integral modulus j(E)), and similarly adding th...

متن کامل

Aliquot Cycles for Elliptic Curves with Complex Multiplication

We review the history of elliptic curves and show that it is possible to form a group law using the points on an elliptic curve over some field L. We review various methods for computing the order of this group when L is finite, including the complex multiplication method. We then define and examine the properties of elliptic pairs, lists, and cycles, which are related to the notions of amicabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996