Identification of an Escherichia coli pepA homolog and its involvement in suppression of the algB phenotype in mucoid Pseudomonas aeruginosa.
نویسندگان
چکیده
Strains of Pseudomonas aeruginosa isolated from the respiratory tracts of patients with cystic fibrosis often display a mucoid morphology due to high levels of expression of the exopolysaccharide alginate. The response regulator AlgB is required for full transcription of the alginate biosynthetic operon. Repeated attempts to demonstrate a direct interaction between AlgB and the promoter region of algD, the first gene in the alginate operon, have thus far been unsuccessful. The possibility that AlgB exerts its effect on algD indirectly exists. To identify putative genes under the control of AlgB which affect algD transcription, transposon mutagenesis of nonmucoid algB derivatives of the mucoid strain FRD1 was employed. Of approximately 3,000 transposon mutants screened, 6 were found to display phenotypes which were mucoid relative to the phenotype of the parental algB strain. The phenotypes of these mutants ranged from being only slightly mucoid to being indistinguishable from that of the original FRD1 strain. One of the particularly mucoid transposon mutants was chosen for further study. This strain was found to be disrupted in a previously uncharacterized open reading frame with 56% amino acid identity to PepA of Escherichia coli. PepA is classified as a leucine aminopeptidase, and homologs have been detected in a number of bacterial, plant, and animal species. This novel gene has been designated phpA (P. aeruginosa homolog of pepA). The insertional inactivation of phpA was found to correlate with the mucoid phenotype and an increase in algD transcription in the algB strain. Expression of phpA from an ectopic chromosomal locus compensated for the transposon insertion in the native phpA gene, restoring algD transcription to levels similar to those observed in the parental algB strain. While phpA expression did not appear to be under the control of AlgB at the transcriptional level, this study demonstrates that loss of phpA in an algB genetic background had a positive effect on alginate expression and, more specifically, on transcription of the alginate biosynthetic operon.
منابع مشابه
One-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm
Objective(s): Pseudomonas aeruginosais a Gram-negative and aerobic rod bacterium that displays mucoid and non-mucoid phenotype. Mucoid strains secrete alginate, which is the main agent of biofilms in chronic P. aeruginosa infections, show high resistance to antibiotics; consequently, the biological disruption of mucoid P. aeruginosa biofilms is an attractive area of study for researchers. Algin...
متن کاملCharacterization of the Pseudomonas aeruginosa alginate lyase gene (algL): cloning, sequencing, and expression in Escherichia coli.
Mucoid strains of Pseudomonas aeruginosa produce a viscous exopolysaccharide called alginate and also express alginate lyase activity which can degrade this polymer. By transposon mutagenesis and gene replacement techniques, the algL gene encoding a P. aeruginosa alginate lyase enzyme was found to reside between algG and algA within the alginate biosynthetic gene cluster at 35 min on the P. aer...
متن کاملThe NtrC family regulator AlgB, which controls alginate biosynthesis in mucoid Pseudomonas aeruginosa, binds directly to the algD promoter.
Alginate production in mucoid (MucA-defective) Pseudomonas aeruginosa is dependent upon several transcriptional regulators, including AlgB, a two-component response regulator belonging to the NtrC family. This role of AlgB was apparently independent of its sensor kinase, KinB, and even the N-terminal phosphorylation domain of AlgB was dispensable for alginate biosynthetic gene (i.e., algD opero...
متن کاملThe effect of bromhexine, gentamicin and imipenem on biofilm of standard bacterial Escherichia coli and Pseudomonas aeruginosa by ELISA method
Background: Biofilms are a collection of microorganisms that have the ability to stick to different levels. Due to the difficulty of treatment of bacterial biofilm infections and their lack of recognition by conventional diagnostic methods, this study aimed to provide a new method of identification and the effect of related drugs on Pseudomonas aeruginosa and Escherichia coli biofilms. Material...
متن کاملPurification and Characterization of Alginate Lyase from Mucoid Pseudomonas aeruginosa Strain 214
Pseudomonas aeruginosa is an opportunistic pathogen that causes a variety of infections in compromised patients. The ability of Pseudomonas aeruginosa to produce chronic infection is based in part on its ability to biosynthesis of biofilm, and alginate is the major polysaccharide in the synthesized biofilm. So alginate degradation is very essential in the dispersion of Pseudomonas aeruginosa bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 181 1 شماره
صفحات -
تاریخ انتشار 1999