Comparison of Cascaded Backstepping Control Approaches with Hysteresis Compensation for a Linear Axis with Pneumatic Muscles

نویسندگان

  • Dominik Schindele
  • Harald Aschemann
چکیده

This paper presents two control approaches for a linear axis with pneumatic muscles. Its guided carriage is driven by a nonlinear drive system consisting of two pulley tackles with pneumatic muscle actuators arranged at both sides. This innovative drive concept allows for an increased workspace as well as higher carriage velocities as compared to a direct actuation. Both proposed control schemes have a cascaded structure, where the control design is based on backstepping techniques. Hysteresis in the force characteristic of the pneumatic muscles is considered by an asymmetric shifted Prandtl-Ishlinskii model, while remaining uncertainties are compensated using an adaptive backstepping strategy. The main difference between both approaches is the usage of either the internal muscle pressures or the muscle forces as controlled variables of the inner control loops. Both control approaches have been implemented on a test-rig and show an excellent closed-loop performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Backstepping Control of a High-Speed Linear Axis Driven by Pneumatic Muscles

This paper presents a backstepping control scheme for a new linear axis. Its guided carriage is driven by a nonlinear mechanism consisting of a rocker with a pair of pneumatic muscle actuators arranged at both sides. This innovative drive concept allows for an increased workspace as well as higher carriage velocities as compared to a direct actuation. Modelling leads to a system of nonlinear di...

متن کامل

Fuzzy gain scheduling of PID controller for stiction compensation in pneumatic control valve

Inherent nonlinearities like, deadband, stiction and hysteresis in control valves degenerate plant performance. Valve stiction standouts as a more widely recognized reason for poor execution in control loops. Measurement of valve stiction is essential to maintain scheduling. For industrial scenarios, loss of execution due to nonlinearity in control valves is an imperative issue that should be t...

متن کامل

Nonlinear Model-Based Control of a Parallel Robot Driven by Pneumatic Muscle Actuators

In this contribution, three nonlinear control strategies are presented for a two-degree-offreedom parallel robot that is actuated by two pairs of pneumatic muscle actuators as depicted in Fig. 1. Pneumatic muscles are innovative tensile actuators consisting of a fibrereinforced vulcanised rubber hose with appropriate connectors at both ends. The working principle is based on a rhombical fibre s...

متن کامل

Integrator Backstepping Control of a 5 DoF Robot Manipulator with Cascaded Dynamics

In this paper, dynamic equations of motion of a 5 DoF robot manipulator including mechanical arms with revolute joints and their electrical actuators are considered. The application of integrator backstepping technique for trajectory tracking in presence of parameters of uncertainty and disturbance is studied. The advantage of this control technique is that it imposes the desired properties of ...

متن کامل

Cascade position control of a single pneumatic artificial muscle–mass system with hysteresis compensation

The inherent hysteresis in a pneumatic artificial muscle (PAM) makes it difficult to control accurately the position of the PAM’s end effector. This hysteresis causes energy loss and the area of the hysteresis loop is dependent on the amplitude of the motion and on the underlying causes of the hysteresis phenomenon. This means that if the hysteresis energy loss is properly compensated, a more a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013