Individual fMRI maps of all phalanges and digit bases of all fingers in human primary somatosensory cortex
نویسندگان
چکیده
This study determined the individual maps of all fingers in Brodmann area 3b of the human primary somatosensory cortex in a single fMRI session by tactile stimulation at 19 sites across all phalanges and digit bases of the 5 right-hand digits. To quantify basic features of the digit maps within and across subjects, we applied standard descriptive measures, but also implemented a novel quantitative analysis. This so-called Direction/Order (DiOr) method tested whether subjects exhibited an ordering of peak fMRI representations along their individual direction of alignment through the set of analyzed phalanges and whether these individual directions were similar across subjects. Across-digit analysis demonstrated that for each set of homologous phalanges, the D5-to-D1 representations were successively represented along a common direction of alignment. Hence, the well-known mediolateral D5-to-D1 somatotopy was not only confirmed for the distal phalanges (p1), but could also be shown for the medial (p2) and proximal phalanges (p3). In contrast, the peak activation for the digit bases (p4) only partly elicited that digit succession. Complementary, intra-digit analysis revealed a divergent picture of map topography for the different digits. Within D5 (and in a trend: D4), an ordered p1-to-p3 succession was found across subjects, pointing to a consistent intra-digit somatotopy for D5, with p3 generally found medial-posterior to p1. In contrast, for D1, D2, and D3, most subjects did not present with ordered p1-to-p3 maps nor were directions of alignment similarly oriented between subjects. These digits therefore exhibited highly diverse representation patterns across subjects.
منابع مشابه
Individual left-hand and right-hand intra-digit representations in human primary somatosensory cortex.
Individual intra-digit somatotopy of all phalanges of the middle and little finger of the right and left hand was studied by functional magnetic resonance imaging in 12 healthy subjects. Phalanges were tactilely stimulated and activation in BA 3b of the human primary somatosensory cortex could be observed for each individual phalanx. Activation peaks were further analysed using the Direction/Or...
متن کاملFingertip representation in the human somatosensory cortex: an fMRI study.
Eight right-handed adult humans underwent functional magnetic resonance imaging (fMRI) of their brain while a vibratory stimulus was applied to an individual digit tip (digit 1, 2, or 5) on the right hand. Multislice echoplanar imaging techniques were utilized during digit stimulation to investigate the organization of the human primary somatosensory (SI) cortex, cortical regions located on the...
متن کاملPerceptually relevant remapping of human somatotopy in 24 hours
Experience-dependent reorganisation of functional maps in the cerebral cortex is well described in the primary sensory cortices. However, there is relatively little evidence for such cortical reorganisation over the short-term. Using human somatosensory cortex as a model, we investigated the effects of a 24 hr gluing manipulation in which the right index and right middle fingers (digits 2 and 3...
متن کاملInvestigating the Stability of Fine-Grain Digit Somatotopy in Individual Human Participants.
UNLABELLED Studies of human primary somatosensory cortex (S1) have placed a strong emphasis on the cortical representation of the hand and the propensity for plasticity therein. Despite many reports of group differences and experience-dependent changes in cortical digit somatotopy, relatively little work has considered the variability of these maps across individuals and to what extent this det...
متن کاملTactile processing in human somatosensory and auditory cortices
Tactile sensation plays an important role in everyday life. While the somatosensory system has been studied extensively, the majority of information has come from studies using animal models. Recent development of high-resolution anatomical and functional imaging techniques has enabled the non-invasive study of human somatosensory cortex and thalamus. This thesis provides new insights into the ...
متن کامل