Restriction categories as enriched categories
نویسندگان
چکیده
Article history: Received 27 November 2012 Received in revised form 4 September 2013 Accepted 20 December 2013 Communicated by B.P.F. Jacobs
منابع مشابه
Convergence and quantale-enriched categories
Generalising Nachbin's theory of ``topology and order'', in this paper we continue the study of quantale-enriched categories equipped with a compact Hausdorff topology. We compare these $V$-categorical compact Hausdorff spaces with ultrafilter-quantale-enriched categories, and show that the presence of a compact Hausdorff topology guarantees Cauchy completeness and (suitably defined) ...
متن کامل$L$-enriched topological systems---a common framework of $L$-topology and $L$-frames
Employing the notions of the strong $L$-topology introduced by Zhangand the $L$-frame introduced by Yao and the concept of $L$-enrichedtopological system defined in the present paper, we constructadjunctions among the categories {bf St$L$-Top} of strong$L$-topological spaces, {bf S$L$-Loc} of strict $L$-locales and{bf $L$-EnTopSys} of $L$-enriched topological systems. All of theseconcepts are ...
متن کاملEnriched Indexed Categories
We develop a theory of categories which are simultaneously (1) indexed over a base category S with finite products, and (2) enriched over an S-indexed monoidal category V . This includes classical enriched categories, indexed and fibered categories, and internal categories as special cases. We then describe the appropriate notion of “limit” for such enriched indexed categories, and show that th...
متن کاملCategories and Computability
2 Categories and examples 7 2.1 The definition of a category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Categories as graphs with composition . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Categories as partial semigroups . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 Categories as enriched categories . . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملA Theory of Enriched Sketches
The theory of enriched accessible categories over a suitable base category V is developed. It is proved that these enriched accessible categories coincide with the categories of flat functors, but also with the categories of models of enriched sketches. A particular attention is devoted to enriched locally presentable categories and enriched functors.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 523 شماره
صفحات -
تاریخ انتشار 2014