Discriminative Learning of Prediction Intervals

نویسندگان

  • Nir Rosenfeld
  • Yishay Mansour
  • Elad Yom-Tov
چکیده

In this work we consider the task of constructing prediction intervals in an inductive batch setting. We present a discriminative learning framework which optimizes the expected error rate under a budget constraint on the interval sizes. Most current methods for constructing prediction intervals offer guarantees for a single new test point. Applying these methods to multiple test points results in a high computational overhead and degraded statistical properties. By focusing on expected errors, our method allows for variability in the per-example conditional error rates. As we demonstrate both analytically and empirically, this flexibility can increase the overall accuracy, or alternatively, reduce the average interval size. While the problem we consider is of a regressive flavor, the loss we use is combinatorial. This allows us to provide PAC-style, finite-sample guarantees. Computationally, we show that our original objective is NPhard, and suggest a tractable convex surrogate. We conclude with a series of experimental evaluations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abstract of " Discriminative Methods for Label Sequence Learning " Ii Discriminative Methods for Label Sequence Learning

of “Discriminative Methods for Label Sequence Learning” by Yasemin Altun, Ph.D., Brown University, May 2005. Discriminative learning framework is one of the very successful fields of machine learning. The methods of this paradigm, such as Boosting and Support Vector Machines, have significantly advanced the state-of-the-art for classification by improving the accuracy and by increasing the appl...

متن کامل

Discriminative Structure Learning of Markov Logic Networks

Markov Logic Networks (MLNs) combine Markov networks and first-order logic by attaching weights to first-order formulas and viewing these as templates for features of Markov networks. Learning the structure of MLNs is performed by state-of-the-art methods by maximizing the likelihood of a relational database. This can lead to suboptimal results given prediction tasks. On the other hand better r...

متن کامل

Scaling up Structured Multi-Label Prediction using Discriminative Mean Field Networks

Multi-label classification is an important task in many modern machine learning applications. Accurate methods model the correlations and relationships between labels, either by assuming a low-dimensional embedding of the labels or a graph structure of label dependencies. While such interactions can be achieved using feed-forward predictors, problems with tight coupling between labels are bette...

متن کامل

Discriminative Learning of Generative Models for Sequence Classification and Motion Tracking

I consider the issue of learning generative probabilistic models (e.g., Bayesian Networks) for the problems of classification and regression. As the generative models now serve as target-predicting functions, the learning problem can be treated differently from the traditional density estimation. Unlike the likelihood maximizing generative learning that fits a model to overall data, the discrim...

متن کامل

An ensemble of discriminative local subspaces in microarray data for gene ontology annotations predictions

Genome sequencing has allowed to know almost every gene of many organisms. However, understanding the functions of most genes is still an open problem. In this paper, we present a novel machine learning method to predict functions of unknown genes in base of gene expression data and Gene Ontology annotations. Most function prediction algorithms developed in the past don’t exploit the discrimina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1710.05888  شماره 

صفحات  -

تاریخ انتشار 2017