Classification of proteomic data with multiclass Logistic Partial Least Squares algorithm
نویسندگان
چکیده
Early detection of cancer is crucial for successful treatments. In this paper, we propose a multiclass Logistic Partial Least Squares (LPLS) algorithm for classification of normal vs. cancer using Mass Spectrometry (MS). LPLS combines the multiclass logistic regression with Partial Least Squares (PLS) algorithm. Wavelet decomposition is also proposed for pre-processing of original data. Wavelet decomposition and the proposed LPLS are applied to real life cancer data. Experimental comparisons show that LPLS with wavelet decomposition outperforms other methods in the analysis of MS data.
منابع مشابه
Least square support vector machine based Multiclass classification of EEG signals
This paper describes the pattern recognition technique based on multiscale discrete wavelet transform(MDWT) and least square support vector machine (LS-SVM) for the classification of EEG signals. The different statistical features are extracted from each EEG signal corresponding to various seizer and nonsiezer brain functions, using MDWT. Further these sets of features are fed to the LS-SVM mul...
متن کاملStability of Gene Selection Methods for Multiclass Clssification
A big problem in applying DNA microarrays for classification is dimension of the dataset. Recently we proposed a gene selection method based on Partial Least Squares (PLS) for searching best genes for classification. The new idea is to use PLS not only as multiclass approach, but to construct more binary selections that use one versus rest and one versus one approaches. Ranked gene lists are hi...
متن کاملPLS and SVD based penalized logistic regression for cancer classification using microarray data
Accurate cancer prediction is important for treatment of cancers. The combination of two dimension reduction methods, partial least squares (PLS) and singular value decomposition (SVD), with the penalized logistic regression (PLR) has created powerful classifiers for cancer prediction using microarray data. Comparing with support vector machine (SVM) on seven publicly available cancer datasets,...
متن کاملPii: S0893-6080(99)00043-x
Mixture of experts (ME) is a modular neural network architecture for supervised learning. A double-loop Expectation-Maximization (EM) algorithm has been introduced to the ME architecture for adjusting the parameters and the iteratively reweighted least squares (IRLS) algorithm is used to perform maximization in the inner loop [Jordan, M.I., Jacobs, R.A. (1994). Hierarchical mixture of experts a...
متن کاملMulticlass Support Vector Classification via Regression
The problem of multiclass classification is considered and resolved through the multiresponse linear regression approach. Scores are used to encode the class labels into multivariate responses. The regression of scores on input attributes is used to extract a lowdimensional linear discriminant subspace. The classification training and prediction are carried out in this low-dimensional subspace....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of bioinformatics research and applications
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2008