Rainbow Connection in Brick Product of Odd Cycle Graphs

نویسنده

  • K.Srinivasa Rao
چکیده

Abstract. Let G be a nontrivial connected graph on which is defined a coloring N k k G E c ∈ → }, ,...., 3 , 2 , 1 { ) ( : , of the edges of G, where adjacent edges may be colored the same. A path in G is called a rainbow path if no two edges of it are colored the same. G is rainbow connected if G contains a rainbow v u − path for every two vertices u and v in it. The minimum k for which there exists such a k-edge coloring is called the rainbow connection number of G, denoted by ). (G rc In this paper, we determine ) (G rc of brick product graphs associated with odd cycles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex rainbow colorings of graphs

In a properly vertex-colored graphG, a path P is a rainbow path if no two vertices of P have the same color, except possibly the two end-vertices of P . If every two vertices of G are connected by a rainbow path, then G is vertex rainbow-connected. A proper vertex coloring of a connected graph G that results in a vertex rainbow-connected graph is a vertex rainbow coloring ofG. The minimum numbe...

متن کامل

Rainbow Connection Number of Graph Power and Graph Products

Rainbow connection number, rc(G), of a connected graph G is the minimum number of colors needed to color its edges so that every pair of vertices is connected by at least one path in which no two edges are colored the same (Note that the coloring need not be proper). In this paper we study the rainbow connection number with respect to three important graph product operations (namely cartesian p...

متن کامل

0n removable cycles in graphs and digraphs

In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...

متن کامل

On the chromatic number of the lexicographic product and the Cartesian sum of graphs

Let G[H] be the lexicographic product of graphs G and H and let G⊕H be their Cartesian sum. It is proved that if G is a nonbipartite graph, then for any graph H, χ(G[H]) ≥ 2χ(H)+d k e, where 2k+1 is the length of a shortest odd cycle of G. Chromatic numbers of the Cartesian sum of graphs are also considered. It is shown in particular that for χ–critical and not complete graphs G and H, χ(G ⊕ H)...

متن کامل

Rainbow Connection Number of Graph Power and Graph Products

The minimum number of colors required to color the edges of a graph so that any two distinct vertices are connected by at least one path in which no two edges are colored the same is called its rainbow connection number. This graph parameter was introduced by Chartrand et al. in 2008. The problem has garnered considerable interest and several variants of the initial version have since been intr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016