Relating max-cut problems and binary linear feasibility problems

نویسنده

  • Florian Jarre
چکیده

This paper explores generalizations of the Goemans-Williamson randomization technique. It establishes a simple equivalence of binary linear feasibility problems and max-cut problems and presents an analysis of the semidefinite max-cut relaxation for the case of a single linear equation. Numerical examples for feasible random binary problems indicate that the randomization technique is efficient when the number of linear equations is large.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An LP-Designed Algorithm for Constraint Satisfaction

The class Max (r, 2)-CSP consists of constraint satisfaction problems with at most two r-valued variables per clause. For instances with n variables and m binary clauses, we present an O(nr)-time algorithm. It is the fastest algorithm for most problems in the class (including Max Cut, Max 2-Sat, and weighted Maximum Independent Set), and in combination with “Generalized CSPs” introduced in a co...

متن کامل

Linear-programming design and analysis of fast algorithms for Max 2-Sat and Max 2-CSP

The class Max (r, 2)-CSP, or simply Max 2-CSP, consists of constraint satisfaction problems with at most two r-valued variables per clause. For instances with n variables and m binary clauses, we present an O(nr)-time algorithm which is the fastest polynomialspace algorithm for many problems in the class, including Max Cut. The method also proves a treewidth bound tw(G) ≤ (13/75 + o(1))m, which...

متن کامل

Linear-programming design and analysis of fast algorithms for Max 2-CSP

The class Max (r, 2)-CSP (or simply Max 2-CSP) consists of constraint satisfaction problems with at most two r-valued variables per clause. For instances with n variables and m binary clauses, we present an O(nr)-time algorithm which is the fastest polynomialspace algorithm for many problems in the class, including Max Cut. The method also proves a treewidth bound tw(G) ≤ (13/75 + o(1))m, which...

متن کامل

Unifying semidefinite and set-copositive relaxations of binary problems and randomization techniques

A reformulation of quadratically constrained binary programs as duals of set-copositive linear optimization problems is derived using either {0, 1}-formulations or {1, 1}-formulations. The latter representation allows an extension of the randomization technique by Goemans and Williamson. An application to the max-clique problem shows that the max-clique problem is equivalent to a linear program...

متن کامل

Solving Sparse Semi-Random Instances of Max Cut and Max CSP in Linear Expected Time

We show that a maximum cut of a random graph below the giantcomponent threshold can be found in linear space and linear expected time by a simple algorithm. In fact, the algorithm solves a more general class of problems, namely binary 2-variable-constraint satisfaction problems, or Max 2-CSPs. In addition to Max Cut, Max 2-CSPs encompass Max Dicut, Max 2-Lin, Max 2-Sat, Max-Ones-2-Sat, maximum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009