Shh-proteoglycan interactions regulate maturation of olfactory glomerular circuitry.
نویسندگان
چکیده
The olfactory system relies on precise circuitry connecting olfactory sensory neurons (OSNs) and appropriate relay and processing neurons of the olfactory bulb (OB). In mammals, the exact correspondence between specific olfactory receptor types and individual glomeruli enables a spatially precise map of glomerular activation that corresponds to distinct odors. However, the mechanisms that govern the establishment and maintenance of the glomerular circuitry are largely unknown. Here we show that high levels of Sonic Hedgehog (Shh) signaling at multiple sites enable refinement and maintenance of olfactory glomerular circuitry. Mice expressing a mutant version of Shh (Shh(Ala/Ala)), with impaired binding to proteoglycan co-receptors, exhibit disproportionately small olfactory bulbs containing fewer glomeruli. Notably, in mutant animals the correspondence between individual glomeruli and specific olfactory receptors is lost, as olfactory sensory neurons expressing different olfactory receptors converge on the same glomeruli. These deficits arise at late stages in post-natal development and continue into adulthood, indicating impaired pruning of erroneous connections within the olfactory bulb. In addition, mature Shh(Ala/Ala) mice exhibit decreased proliferation in the subventricular zone (SVZ), with particular reduction in neurogenesis of calbindin-expressing periglomerular cells. Thus, Shh interactions with proteoglycan co-receptors function at multiple locations to regulate neurogenesis and precise olfactory connectivity, thereby promoting functional neuronal circuitry.
منابع مشابه
Embryonic Origin of Olfactory Circuitry in Drosophila: Contact and Activity-Mediated Interactions Pattern Connectivity in the Antennal Lobe
Olfactory neuropiles across different phyla organize into glomerular structures where afferents from a single olfactory receptor class synapse with uniglomerular projecting interneurons. In adult Drosophila, olfactory projection interneurons, partially instructed by the larval olfactory system laid down during embryogenesis, pattern the developing antennal lobe prior to the ingrowth of afferent...
متن کاملA two-layer biophysical model of cholinergic neuromodulation in olfactory bulb.
Cholinergic inputs from the basal forebrain regulate multiple olfactory bulb (OB) functions, including odor discrimination, perceptual learning, and short-term memory. Previous studies have shown that nicotinic cholinergic receptor activation sharpens mitral cell chemoreceptive fields, likely via intraglomerular circuitry. Muscarinic cholinergic activation is less well understood, though muscar...
متن کاملCerebellar proteoglycans regulate sonic hedgehog responses during development.
Sonic hedgehog promotes proliferation of developing cerebellar granule cells. As sonic hedgehog is expressed in the cerebellum throughout life it is not clear why proliferation occurs only in the early postnatal period and only in the external granule cell layer. We asked whether heparan sulfate proteoglycans might regulate sonic hedgehog-induced proliferation and thereby contribute to the spec...
متن کاملInteractions with the young down-regulate adult olfactory neurogenesis and enhance the maturation of olfactory neuroblasts in sheep mothers
New neurons are continuously added in the dentate gyrus (DG) and the olfactory bulb of mammalian brain. While numerous environmental factors controlling survival of newborn neurons have been extensively studied, regulation by social interactions is less documented. We addressed this question by investigating the influence of parturition and interactions with the young on neurogenesis in sheep m...
متن کاملSHh activity and localization is regulated by perlecan.
Proliferation and cell fate determination in the developing embryo are extrinsically regulated by multiple interactions among diverse secreted factors, such as Sonic Hedgehog (SHh), which act in a concentration-dependent manner. The fact that SHh is secreted as a lipid-modified protein suggests the existence of a mechanism to regulate its movement across embryonic fields. We have previously sho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental neurobiology
دوره 74 12 شماره
صفحات -
تاریخ انتشار 2014