Modulation of Charge Recombination in CsPbBr3 Perovskite Films with Electrochemical Bias

نویسندگان

  • Rebecca A Scheidt
  • Gergely F Samu
  • Csaba Janáky
  • Prashant V Kamat
چکیده

The charging of a mesoscopic TiO2 layer in a metal halide perovskite solar cell can influence the overall power conversion efficiency. By employing CsPbBr3 films deposited on a mesoscopic TiO2 film, we have succeeded in probing the influence of electrochemical bias on the charge carrier recombination process. The transient absorption spectroscopy experiments conducted at different applied potentials indicate a decrease in the charge carrier lifetimes of CsPbBr3 as we increase the potential from -0.6 to +0.6 V vs Ag/AgCl. The charge carrier lifetime increased upon reversing the applied bias, thus indicating the reversibility of the photoresponse to charging effects. The ultrafast spectroelectrochemical experiments described here offer a convenient approach to probe the charging effects in perovskite solar cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrodeposition of SnO2 on FTO and its Application in Planar Heterojunction Perovskite Solar Cells as an Electron Transport Layer

We report the performance of perovskite solar cells (PSCs) with an electron transport layer (ETL) consisting of a SnO2 thin film obtained by electrochemical deposition. The surface morphology and thickness of the electrodeposited SnO2 films were closely related to electrochemical process conditions, i.e., the applied voltage, bath temperature, and deposition time. We investigated the performanc...

متن کامل

The Role of Trap-assisted Recombination in Luminescent Properties of Organometal Halide CH3NH3PbBr3 Perovskite Films and Quantum Dots

Hybrid metal halide perovskites have been paid enormous attentions in photophysics research, whose excellent performances were attributed to their intriguing charge carriers proprieties. However, it still remains far from satisfaction in the comprehensive understanding of perovskite charge-transport properities, especially about trap-assisted recombination process. In this Letter, through time-...

متن کامل

Restricted charge recombination process in PbS quantum dot sensitized solar cells by different coating cycles of ZnS films

The relatively low power conversion efficiency (PCE) of quantum dot sensitized solar cells (QDSSCs) is attributed to charge recombination at the interfaces. Charge recombination process could be suppressed by coating the QD layer with a wide band gap semiconductor such as ZnS, which acts as a blocking layer between the QDs and hole transport material (HTM). In present study, to improve PCE of P...

متن کامل

Solution-processed highly bright and durable cesium lead halide perovskite light-emitting diodes.

Recently, CsPbBr3 perovskites have been emerging as very promising green emission materials for light-emitting diodes (LEDs) due to their high color purity, low cost and high photoluminescence quantum yield (PLQY). However, the corresponding LED performance is still low and far behind CH3NH3PbBr3; it is due to the lack of proper perovskite film preparation methods and interfacial engineering. H...

متن کامل

Elucidating the role of disorder and free-carrier recombination kinetics in CH3NH3PbI3 perovskite films

Apart from broadband absorption of solar radiation, the performance of photovoltaic devices is governed by the density and mobility of photogenerated charge carriers. The latter parameters indicate how many free carriers move away from their origin, and how fast, before loss mechanisms such as carrier recombination occur. However, only lower bounds of these parameters are usually obtained. Here...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 140  شماره 

صفحات  -

تاریخ انتشار 2018