Lectures on Nevanlinna theory

نویسنده

  • Alexandre Eremenko
چکیده

Value distribution of a rational function f is controlled by its degree d, which is the number of preimages of a generic point. If we denote by n(a) the number of solutions of the equation f(z) = a, counting multiplicity, in the complex plane C, then n(a) ≤ d for all a ∈ C with equality for all a with one exception, namely a = f(∞). The number of critical points of f in C, counting multiplicity, is at most 2d− 2. Nevanlinna theory generalizes these facts to transcendental functions f : C 7→ C. The main tool is the characteristic function Tf (r) which replaces the degree in the case when f is transcendental.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ahlfors’ contribution to the theory of meromorphic functions

This is an expanded version of one of the Lectures in memory of Lars Ahlfors in Haifa in 1996. Some mistakes are corrected and references added. This article is an exposition for non-specialists of Ahlfors’ work in the theory of meromorphic functions. When the domain is not specified we mean meromorphic functions in the complex plane C. The theory of meromorphic functions probably begins with t...

متن کامل

An Analogue of Continued Fractions in Number Theory for Nevanlinna Theory

We show an analogue of continued fractions in approximation to irrational numbers by rationals for Nevanlinna theory. The analogue is a sequence of points in the complex plane which approaches a given finite set of points and at a given rate in the sense of Nevanlinna theory. 0. Introduction Since P. Vojta [17] created a dictionary between Nevanlinna theory and Diophantine approximation theory,...

متن کامل

Multiplier Ideal Sheaves, Nevanlinna Theory, and Diophantine Approximation

This note states a conjecture for Nevanlinna theory or diophantine approximation, with a sheaf of ideals in place of the normal crossings divisor. This is done by using a correction term involving a multiplier ideal sheaf. This new conjecture trivially implies earlier conjectures in Nevanlinna theory or diophantine approximation, and in fact is equivalent to these conjectures. Although it does ...

متن کامل

Entries of Indefinite Nevanlinna Matrices

In the early 1950’s, M. G. Krein characterized the entire functions that are an entry of some Nevanlinna matrix, and the pairs of entire functions that are a row of some Nevanlinna matrix. In connection with Pontryagin space versions of Krein’s theory of entire operators and de Branges’ theory of Hilbert spaces of entire functions, an indefinite analog of the Nevanlinna matrices plays a role. I...

متن کامل

Value distribution and potential theory

We describe some results of value distribution theory of holomorphic curves and quasiregular maps, which are obtained using potential theory. Among the results discussed are: extensions of Picard’s theorems to quasiregular maps between Riemannian manifolds, a version of the Second Main Theorem of Nevanlinna for curves in projective space and non-linear divisors, description of extremal function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010