Proangiogenic factor PlGF programs CD11b(+) myelomonocytes in breast cancer during differentiation of their hematopoietic progenitors.
نویسندگان
چکیده
Tumor-mobilized bone marrow-derived CD11b(+) myeloid cells promote tumor angiogenesis, but how and when these cells acquire proangiogenic properties is not fully elucidated. Here, we show that CD11b(+) myelomonocytic cells develop proangiogenic properties during their differentiation from CD34(+) hematopoietic progenitors and that placenta growth factor (PlGF) is critical in promoting this education. Cultures of human CD34(+) progenitors supplemented with conditioned medium from breast cancer cell lines or PlGF, but not from nontumorigenic breast epithelial lines, generate CD11b(+) cells capable of inducing endothelial cell sprouting in vitro and angiogenesis in vivo. An anti-Flt-1 mAb or soluble Flt-1 abolished the generation of proangiogenic activity during differentiation from progenitor cells. Moreover, inhibition of metalloproteinase activity, but not VEGF, during the endothelial sprouting assay blocked sprouting induced by these proangiogenic CD11b(+) myelomonocytes. In a mouse model of breast cancer, circulating CD11b(+) cells were proangiogenic in the sprouting assays. Silencing of PlGF in tumor cells prevented the generation of proangiogenic activity in circulating CD11b(+) cells, inhibited tumor blood flow, and slowed tumor growth. Peripheral blood of breast cancer patients at diagnosis, but not of healthy individuals, contained elevated levels of PlGF and circulating proangiogenic CD11b(+) myelomonocytes. Taken together, our results show that cancer cells can program proangiogenic activity in CD11b(+) myelomonocytes during differentiation of their progenitor cells in a PlGF-dependent manner. These findings impact breast cancer biology, detection, and treatment.
منابع مشابه
Microenvironment and Immunology Proangiogenic Factor PlGF Programs CD11bþ Myelomonocytes in Breast Cancer during Differentiation of Their Hematopoietic Progenitors
Tumor-mobilized bone marrow–derived CD11bþ myeloid cells promote tumor angiogenesis, but how and when these cells acquire proangiogenic properties is not fully elucidated. Here, we show that CD11bþ myelomonocytic cells develop proangiogenic properties during their differentiation from CD34þ hematopoietic progenitors and that placenta growth factor (PlGF) is critical in promoting this education....
متن کاملBone marrow-derived cells are implicated as a source of lymphatic endothelial progenitors in human breast cancer
Bone marrow-derived endothelial progenitor cells (EPCs) infiltrate into sites of neovascularization in adult tissues and mature into functional blood endothelial cells (BECs) during a process called vasculogenesis. Human marrow-derived EPCs have recently been reported to display a mixed myeloid and lymphatic endothelial cell (LEC) phenotype during inflammation-induced angiogenesis; however, the...
متن کاملRelB regulates human dendritic cell subset development by promoting monocyte intermediates.
In humans, epithelial Langerhans cells (LCs) and monocyte-derived/interstitial dendritic cells (DCs) constitute 2 myeloid DC sublineages. Molecular mechanisms involved in their development from common myeloid progenitors remain poorly defined. Here we demonstrate that the nuclear factor-kappaB (NF-kappaB) transcription factor RelB regulates the generation of monocytic CD14(+)CD11b(+) precursors...
متن کاملMiR-507 inhibits the migration and invasion of human breastcancer cells through Flt-1 suppression
Vascular endothelial growth factor receptor-1/fms-related tyrosine kinase-1 (VEGFR-1/Flt-1) is a tyrosine kinase receptor that binds placental growth factor (PlGF). Flt-1 is also highly expressed in breast-cancer tissues and breast-cancer cell lines. However, the molecular mechanism by which Flt-1 promotes breast-cancer invasion and metastasis by binding to PlGF-1 is unclear. In this study, we ...
متن کاملHypoxia activates placental growth factor expression in lymphatic endothelial cells
Placental growth factor (PlGF), a proangiogenic member of vascular endothelial growth family, is active during pathological conditions like cancer, metastasis formation and hind limb ischemia and in wound healing. Endothelial cells express PlGF and hypoxia positively modulates in vitro its expression. To verify whether hypoxia modulates PlGF expression in different cellular contexts and in vivo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 71 11 شماره
صفحات -
تاریخ انتشار 2011