Nitrile pathway involving acyl-CoA synthetase: overall metabolic gene organization and purification and characterization of the enzyme.
نویسندگان
چکیده
Two open reading frames (nhpS and acsA) were identified immediately downstream of the previously described Pseudomonas chlororaphis B23 nitrile hydratase (NHase) gene cluster (encoding aldoxime dehydratase, amidase, the two NHase subunits, and an uncharacterized protein). The amino acid sequence deduced from acsA shows similarity to that of acyl-CoA synthetase (AcsA). The acsA gene product expressed in Escherichia coli showed acyl-CoA synthetase activity toward butyric acid and CoA as substrates, with butyryl-CoA being synthesized. From the E. coli transformant, AcsA was purified to homogeneity and characterized. The quality of the recombinant protein was verified by the NH2-terminal amino acid sequence and the results of matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The apparent Km values for butyric acid, CoA, and ATP were 0.32 +/- 0.04, 0.37 +/- 0.02, and 0.22 +/- 0.02 mm, respectively. AcsA was shown to be a short-chain acyl-CoA synthetase, according to the catalytic efficiencies (kcat/Km) for various acids. The substrate specificity of AcsA was similar to those of aldoxime dehydratase, NHase, and amidase, the genes of which coexist in the same orientation in the gene cluster. P. chlororaphis B23 grew when cultured in a medium containing butyraldoxime as the sole carbon and nitrogen source. The activities of aldoxime dehydratase, NHase, and amidase were detected together with that of acyl-CoA synthetase under the culture conditions used. Moreover, on culture in a medium containing butyric acid as the sole carbon source, acyl-CoA synthetase activity was also detected. Together with the adjacent locations of the aldoxime dehydratase, NHase, amidase, and acyl-CoA synthetase genes, these findings suggest that the four enzymes are sequentially correlated with one another in vivo to utilize butyraldoxime as a carbon and nitrogen source. This is the first report of an overall "nitrile pathway" (aldoxime-->nitrile-->amide-->acid-->acyl-CoA) comprising these enzymes.
منابع مشابه
The effects of ginsenoside Rb1 on fatty acid β-oxidation, mediated by AMPK, in the failing heart
Objective(s): This study intended to investigate the effects of Ginsenoside-Rbl (Gs-Rbl) on fatty acid β-oxidation (FAO) in rat failing heart and to identify potential mechanisms of Gs-Rbl improving heart failure (HF) by FAO pathway dependent on AMP-activated protein kinase (AMPK). Materials and Methods: Rats with chronic HF, induced by adriamycin (Adr), were randomly grouped into 7 groups. Gs-...
متن کاملSynthesis of amides and peptides using new enzyme function
We have extensively studied microbial metabolism of toxic compounds with a triple bond between carbon and nitrogen, such as nitriles [R–CN] . In the Pseudomonas chlororaphis B23 strain, nitrile is hydrated to amide by nitrile hydratase (NHase), followed by degradation to acid by amidase. This strain’s NHase was previously used for the industrial acrylamide production and is now used for the pro...
متن کاملNovel Reaction of Succinyl Coenzyme A (Succinyl-CoA) Synthetase: Activation of 3-Sulfinopropionate to 3-Sulfinopropionyl-CoA in Advenella mimigardefordensis Strain DPN7 during Degradation of 3,3 -Dithiodipropionic Acid †
The sucCD gene of Advenella mimigardefordensis strain DPN7 encodes a succinyl coenzyme A (succinyl-CoA) synthetase homologue (EC 6.2.1.4 or EC 6.2.1.5) that recognizes, in addition to succinate, the structural analogues 3-sulfinopropionate (3SP) and itaconate as substrates. Accumulation of 3SP during 3,3 -dithiodipropionic acid (DTDP) degradation was observed in Tn5::mob-induced mutants of A. m...
متن کاملThe Escherichia coli fadK (ydiD) gene encodes an anerobically regulated short chain acyl-CoA synthetase.
We recently reported a new metabolic competency for Escherichia coli, the ability to degrade and utilize fatty acids of various chain lengths as sole carbon and energy sources. This beta-oxidation pathway is distinct from the previously described aerobic fatty acid degradation pathway and requires enzymes encoded by two operons, yfcYX and ydiQRSTD. The yfcYX operon (renamed fadIJ) encodes enzym...
متن کاملEnzymatic and genetic characterization of firefly luciferase and Drosophila CG6178 as a fatty acyl-CoA synthetase.
Recently we found that firefly luciferase is a bifunctional enzyme, catalyzing not only the luminescence reaction but also long-chain fatty acyl-CoA synthesis. Further, the gene product of CG6178 (CG6178), an ortholog of firefly luciferase in Drosophila melanogaster, was found to be a long-chain fatty acyl-CoA synthetase and dose not function as a luciferase. We investigated the substrate speci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 10 شماره
صفحات -
تاریخ انتشار 2005