Svd/qr Based Model Error Indicator Function

نویسندگان

  • Michael M. Yang
  • David L. Brown
چکیده

A new model error indicator function based on singular value decomposition (SVD) and QR permutation decomposition techniques is proposed. Since an updating problem including large numbers of updating parameters is usually ill-conditioned, a singular value decomposition technique is first used to determine the meaningful submatrix of the system data matrix. A QR permutation decomposition with column pivoting is then performed on this sub-matrix to find the permuted parameters. The equation error n”rms corresponding to sequential reduced systems are calculated and an error termination criterion is applied to determine the number of meaningful updating parameters. The proposed method is compared with two other popular error indicator functions. Test care includes a free-free supported beam structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel-based Weighted Discriminant Analysis with QR Decomposition and Its Application to Face Recognition

Kernel discriminant analysis (KDA) is a widely used approach in feature extraction problems. However, for high-dimensional multi-class tasks, such as faces recognition, traditional KDA algorithms have a limitation that the Fisher criterion is non-optimal with respect to classification rate. Moreover, they suffer from the small sample size problem. This paper presents two variants of KDA called ...

متن کامل

An Svd Updating Algorithm for Subspace Tracking

In this paper, we extend the well known QR-updating scheme to a similar but more versatile and generally applicable scheme for updating the singular value decomposition (SVD). This is done by supplementing the QR-updating with a Jacobi-type SVD procedure, where apparently only a few SVD steps after each QR-update su ce in order to restore an acceptable approximation for the SVD. This then resul...

متن کامل

Improved RAN sequential prediction using orthogonal techniques

A new learning strategy for time-series prediction using radial basis function (RBF) networks is introduced. Its potential is examined in the particular case of the resource allocating network model, although the same ideas could apply to extend any other procedure. In the early stages of learning, addition of successive new groups of RBFs provides an increased rate of convergence. At the same ...

متن کامل

QR factorization with complete pivoting and accurate computation of the SVD

A new algorithm of Demmel et al. for computing the singular value decomposition (SVD) to high relative accuracy begins by computing a rank-revealing decomposition (RRD). Demmel et al. analyse the use of Gaussian elimination with complete pivoting (GECP) for computing the RRD. We investigate the use of QR factorization with complete pivoting (that is, column pivoting together with row sorting or...

متن کامل

Recursive Subspace Identification Algorithm using the Propagator Based Method

Subspace model identification (SMI) method is the effective method in identifying dynamic state space linear multivariable systems and it can be obtained directly from the input and output data. Basically, subspace identifications are based on algorithms from numerical algebras which are the QR decomposition and Singular Value Decomposition (SVD). In industrial applications, it is essential to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002