Electrosensitive Spatial Vectors in Elasmobranch Fishes: Implications for Source Localization

نویسندگان

  • Ariel C. Rivera-Vicente
  • Josiah Sewell
  • Timothy C. Tricas
چکیده

The electrosense of sharks and rays is used to detect weak dipole-like bioelectric fields of prey, mates and predators, and several models propose a use for the detection of streaming ocean currents and swimming-induced fields for geomagnetic orientation. We assessed pore distributions, canal vectors, complementarity and possible evolutionary divergent functions for ampullary clusters in two sharks, the scalloped hammerhead (Sphyrna lewini) and the sandbar shark (Carcharhinus plumbeus), and the brown stingray (Dasyatis lata). Canal projections were determined from measured coordinates of each electrosensory pore and corresponding ampulla relative to the body axis. These species share three ampullary groups: the buccal (BUC), mandibular (MAN) and superficial ophthalmic (SO), which is subdivided into anterior (SOa) and posterior (SOp) in sharks. The stingray also has a hyoid (HYO) cluster. The SOp in both sharks contains the longest (most sensitive) canals with main projections in the posterior-lateral quadrants of the horizontal plane. In contrast, stingray SO canals are few and short with the posterior-lateral projections subsumed by the HYO. There was strong projection coincidence by BUC and SOp canals in the posterior lateral quadrant of the hammerhead shark, and laterally among the stingray BUC and HYO. The shark SOa and stingray SO and BUC contain short canals located anterior to the mouth for detection of prey at close distance. The MAN canals of all species project in anterior or posterior directions behind the mouth and likely coordinate prey capture. Vertical elevation was greatest in the BUC of the sandbar shark, restricted by the hammerhead cephalofoil and extremely limited in the dorsoventrally flattened stingray. These results are consistent with the functional subunit hypothesis that predicts specialized ampullary functions for processing of weak dipole and geomagnetic induced fields, and provides an anatomical basis for future experiments on central processing of different forms of relevant electric stimuli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trophic interactions among three elasmobranch species coexisting in the Oman Sea: implications for resource partitioning

In this study, trophic interactions were studied among three elasmobranches including Iago omanensis, Rhinobatos punctifer and Torpedo sinuspersici coexisting in the depth ranging from 50 to 100 meters in the Oman Sea (Sistan and Balochistan waters). A total of 238 specimens were collected using industrial bottom trawlers of ‘FERDOWS’ during spring and summer,2014 and their stomach contents wer...

متن کامل

Digenea and acanthocephala of elasmobranch fishes from the southern coast of Brazil.

New records for helminth species recovered from elasmobranch fishes in Brazil are established. Digenean and acanthocephalan parasites of elasmobranch fishes are reported from the southern coast of Brazil: Otodistomum veliporum (Creplin, 1837) Stafford, 1904 (Digenea: Azygiidae) in the stomach and spiral valve of Dipturus trachydermus and in the spiral valve of Squatina sp. Cystacanths and juven...

متن کامل

Determinants of tapeworm species richness in elasmobranch fishes: untangling environmental and phylogenetic influences

Parasite species richness is a fundamental characteristic of host species and varies substantially among host communities. Hypotheses aiming to explain observed patterns of richness are numerous, and none is universal. In this study, we use tapeworm parasites of elasmobranch fishes to examine the phylogenetic and environmental influences on the variation in species richness for this specific sy...

متن کامل

Immunochemical analysis of the vacuolar proton-ATPase B-subunit in the gills of a euryhaline stingray (Dasyatis sabina): effects of salinity and relation to Na(+)/K(+)-ATPase.

In the gills of freshwater teleost fishes, vacuolar proton-ATPase (V-H(+)-ATPase) is found on the apical membrane of pavement and chloride (Na(+)/K(+)-ATPase-rich) cells, and is an important transporter for energizing Na(+) uptake and H(+) excretion. In the gills of elasmobranch fishes, the V-H(+)-ATPase has not been extensively studied and its expression in freshwater individuals has not been ...

متن کامل

Olfactory morphology and physiology of elasmobranchs.

Elasmobranch fishes are thought to possess greater olfactory sensitivities than teleost fishes due in part to the large amount of epithelial surface area that comprises their olfactory organs; however, direct evidence correlating the size of the olfactory organ to olfactory sensitivity is lacking. This study examined the olfactory morphology and physiology of five distantly related elasmobranch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011