Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes.

نویسندگان

  • Yi-Han Lin
  • Jin-Ling Xu
  • Jiangyong Hu
  • Lian-Hui Wang
  • Say Leong Ong
  • Jared Renton Leadbetter
  • Lian-Hui Zhang
چکیده

N-acylhomoserine lactones (AHLs) are used as signal molecules by many quorum-sensing Proteobacteria. Diverse plant and animal pathogens use AHLs to regulate infection and virulence functions. These signals are subject to biological inactivation by AHL-lactonases and AHL-acylases. Previously, little was known about the molecular details underlying the latter mechanism. An AHL signal-inactivating bacterium, identified as a Ralstonia sp., was isolated from a mixed-species biofilm. The signal inactivation encoding gene from this organism, which we call aiiD, was cloned and successfully expressed in Escherichia coli and inactivated three AHLs tested. The predicted 794-amino-acid polypeptide was most similar to the aculeacin A acylase (AAC) from Actinoplanes utahensis and also shared significant similarities with cephalosporin acylases and other N-terminal (Ntn) hydrolases. However, the most similar homologues of AiiD are deduced proteins of undemonstrated function from available Ralstonia, Deinococcus and Pseudomonas genomes. LC-MS analyses demonstrated that AiiD hydrolyses the AHL amide, releasing homoserine lactone and the corresponding fatty acid. Expression of AiiD in Pseudomonas aeruginosa PAO1 quenched quorum sensing by this bacterium, decreasing its ability to swarm, produce elastase and pyocyanin and to paralyze nematodes. Thus, AHL-acylases have fundamental implications and hold biotechnological promise in quenching quorum sensing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genomic Analysis Reveals Versatile Organisms for Quorum Quenching Enzymes: Acyl-Homoserine Lactone-Acylase and -Lactonase

Microbial virulence and their resistance to multiple drugs have obliged researchers to look for novel drug targets. Virulence of pathogenic microbes is regulated by signal molecules such as acylated homoserine lactone (AHL) produced during a cell density dependent phenomenon of quorum sensing (QS). In contrast, certain microbes produce AHL-lactonases and -acylases to degrade QS signals, also te...

متن کامل

Endophytic Actinomycetes: A Novel Source of Potential Acyl Homoserine Lactone Degrading Enzymes

Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL) quorum sensing (QS) system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE) results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel...

متن کامل

Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1.

The virulence of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 is controlled by an N-acyl-homoserine lactone (AHL)-dependent quorum-sensing system. During functional analysis of putative acylase genes in the P. aeruginosa PAO1 genome, the PA2385 gene was found to encode an acylase that removes the fatty acid side chain from the homoserine lactone (HSL) nucleus of AHL-dependent qu...

متن کامل

Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1.

Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl,...

متن کامل

Characterization of wetland quorum quenching Pseudomonas aeruginosa strain 2SW8 and its 2-heptyl-3-hydroxy-4-quinolone production.

Most Proteobacteria produce N-acylhomoserine lactones for bacterial cell-to-cell communication, a process called quorum sensing. Interference of quorum sensing, commonly known as quorum quenching, represents an important way to control quorum sensing. This work reports the isolation of quorum quenching bacterium strain 2WS8 from Malaysia tropical wetland water (2°11'8"N, 102°15'2"E, in 2007) by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular microbiology

دوره 47 3  شماره 

صفحات  -

تاریخ انتشار 2003