Optimal Reconstruction of a Sequence from its Probes
نویسندگان
چکیده
An important combinatorial problem, motivated by DNA sequencing in molecular biology, is the reconstruction of a sequence over a small finite alphabet from the collection of its probes (the sequence spectrum), obtained by sliding a fixed sampling pattern over the sequence. Such construction is required for Sequencing-by-Hybridization (SBH), a novel DNA sequencing technique based on an array (SBH chip) of short nucleotide sequences (probes). Once the sequence spectrum is biochemically obtained, a combinatorial method is used to reconstruct the DNA sequence from its spectrum. Since technology limits the number of probes on the SBH chip, a challenging combinatorial question is the design of a smallest set of probes that can sequence an arbitrary DNA string of a given length. We present in this work a novel probe design, crucially based on the use of universal bases [bases that bind to any nucleotide (Loakes and Brown, 1994)] that drastically improves the performance of the SBH process and asymptotically approaches the information-theoretic bound up to a constant factor. Furthermore, the sequencing algorithm we propose is substantially simpler than the Eulerian path method used in previous solutions of this problem.
منابع مشابه
Simulated Sequencing by Hybridization Using Evolutionary Programming
Sequencing of DNA is among the most important tasks in molecular biology. DNA chips are considered to be a more rapid alternative to more common gel-based methods of sequencing. Previously, we demonstrated the reconstruction of DNA sequence information from a simulated DNA chip using evolutionary programming. The research presented here extends this work by relaxing several assumptions adopted ...
متن کاملSelection of optimal oligonucleotide probes for microarrays using multiple criteria, global alignment and parameter estimation
The oligonucleotide specificity for microarray hybridization can be predicted by its sequence identity to non-targets, continuous stretch to non-targets, and/or binding free energy to non-targets. Most currently available programs only use one or two of these criteria, which may choose 'false' specific oligonucleotides or miss 'true' optimal probes in a considerable proportion. We have develope...
متن کاملSensitivity and Specificity of Nucleic Acid Sequence-Based Amplification Method for Diagnosis of Cutaneous Leishmaniasis
Abstract Background and Objective: Culture, microscopic method is a gold standard method for identification of Lishmania parasite. The use of Molecular methods such as RT- PCR compared to microscopic methods has a higher sensitivity and specificity however, it is not widely used due to its expensive equipment and the time requested. The use of nucleic acid sequence based amplification (NASBA) ...
متن کاملGene Probe Designing for Evaluation of the Diversity of Bradyrhizobium japonicum Isolates
Many researchers consider the use of different probes for hybridization assays as suitable for studying the genetic diversity of nitrogen fixing bacteria. In this study for asessing genetic diversity among Bradyrhizobium japonicum isolates, two different probes (sucA and topA) chosen from the chromosomal genome of Bradyrhizobium strain USDA 110 were designed, evaluated by DNAMAN software and im...
متن کاملReconstruction of ancestral 16S rRNA reveals mutation bias in the evolution of optimal growth temperature in the Thermotogae phylum.
Optimal growth temperature is a complex trait involving many cellular components, and its physiology is not yet fully understood. Evolution of continuous characters, such as optimal growth temperature, is often modeled as a one-dimensional random walk, but such a model may be an oversimplification given the complex processes underlying the evolution of continuous characters. Recent articles hav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 6 3-4 شماره
صفحات -
تاریخ انتشار 1999