Very high gravity ethanol fermentation by flocculating yeast under redox potential-controlled conditions
نویسندگان
چکیده
UNLABELLED BACKGROUND Very high gravity (VHG) fermentation using medium in excess of 250 g/L sugars for more than 15% (v) ethanol can save energy consumption, not only for ethanol distillation, but also for distillage treatment; however, stuck fermentation with prolonged fermentation time and more sugars unfermented is the biggest challenge. Controlling redox potential (ORP) during VHG fermentation benefits biomass accumulation and improvement of yeast cell viability that is affected by osmotic pressure and ethanol inhibition, enhancing ethanol productivity and yield, the most important techno-economic aspect of fuel ethanol production. RESULTS Batch fermentation was performed under different ORP conditions using the flocculating yeast and media containing glucose of 201 ± 3.1, 252 ± 2.9 and 298 ± 3.8 g/L. Compared with ethanol fermentation by non-flocculating yeast, different ORP profiles were observed with the flocculating yeast due to the morphological change associated with the flocculation of yeast cells. When ORP was controlled at -100 mV, ethanol fermentation with the high gravity (HG) media containing glucose of 201 ± 3.1 and 252 ± 2.9 g/L was completed at 32 and 56 h, respectively, producing 93.0 ± 1.3 and 120.0 ± 1.8 g/L ethanol, correspondingly. In contrast, there were 24.0 ± 0.4 and 17.0 ± 0.3 g/L glucose remained unfermented without ORP control. As high as 131.0 ± 1.8 g/L ethanol was produced at 72 h when ORP was controlled at -150 mV for the VHG fermentation with medium containing 298 ± 3.8 g/L glucose, since yeast cell viability was improved more significantly. CONCLUSIONS No lag phase was observed during ethanol fermentation with the flocculating yeast, and the implementation of ORP control improved ethanol productivity and yield. When ORP was controlled at -150 mV, more reducing power was available for yeast cells to survive, which in turn improved their viability and VHG ethanol fermentation performance. On the other hand, controlling ORP at -100 mV stimulated yeast growth and enhanced ethanol production under the HG conditions. Moreover, the ORP profile detected during ethanol fermentation with the flocculating yeast was less fluctuated, indicating that yeast flocculation could attenuate the ORP fluctuation observed during ethanol fermentation with non-flocculating yeast.
منابع مشابه
Corrigendum: Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast
Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g...
متن کاملProcess optimization for ethanol production from very high gravity (VHG) finger millet medium using response surface methodology
The Box-Wilson central composite design (CCD) based on response surface methodology (RSM) was used for ethanol fermentation using very high gravity (VHG) finger millet hydrolysate. Optimized process variables were namely, concentrations of yeast extract, magnesium sulphate and pH of the medium. High gravity mashes (>300 g dissolved solids per liter) were prepared by a thermo-stable α-amylase, f...
متن کاملSustaining fermentation in high-gravity ethanol production by feeding yeast to a temperature-profiled multifeed simultaneous saccharification and co-fermentation of wheat straw
BACKGROUND Considerable progress is being made in ethanol production from lignocellulosic feedstocks by fermentation, but negative effects of inhibitors on fermenting microorganisms are still challenging. Feeding preadapted cells has shown positive effects by sustaining fermentation in high-gravity simultaneous saccharification and co-fermentation (SSCF). Loss of cell viability has been reporte...
متن کاملDevelopment of Novel Textile Bioreactor for Anaerobic Utilization of Flocculating Yeast for Ethanol Production
Process development, cheaper bioreactor cost, and faster fermentation rate can aid in reducing the cost of fermentation. In this article, these ideas were combined in developing a previously introduced textile bioreactor for ethanol production. The bioreactor was developed to utilize flocculating yeast for ethanol production under anaerobic conditions. A mixing system, which works without aerat...
متن کاملApplication of very high gravity technology to the cofermentation of sweet stem sorghum juice and sorghum grain
Ethanol production from mixtures of sweet stem sorghum juice and sorghum grain was investigated under normal and very high gravity (VHG) fermentation conditions. Fermentation was carried out using Saccharomyces cere6isiae yeast strain N96 at 30°C. For VHG fermentation, sucrose was added to the sweet sorghum juice to obtain a concentration of 34 g per 100 ml of dissolved solids. Fermentation was...
متن کامل