Impact of substrate characteristics on performance of large area plasmonic photoconductive emitters.
نویسندگان
چکیده
We present a comprehensive analysis of terahertz radiation from large area plasmonic photoconductive emitters in relation with characteristics of device substrate. Specifically, we investigate the radiation properties of large area plasmonic photoconductive emitters fabricated on GaAs substrates that exhibit short carrier lifetimes through low-temperature substrate growth and through epitaxially embedded rare-earth arsenide (ErAs and LuAs) nanoparticles in superlattice structures. Our analysis indicates that the utilized substrate composition and growth process for achieving short carrier lifetimes are crucial in determining substrate resistivity, carrier drift velocity, and carrier lifetime, which directly impact optical-to-terahertz conversion efficiency, radiation power, radiation bandwidth, and reliability of large area plasmonic photoconductive emitters.
منابع مشابه
Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes.
Even though the terahertz spectrum is well suited for chemical identification, material characterization, biological sensing and medical imaging, practical development of these applications has been hindered by attributes of existing terahertz optoelectronics. Here we demonstrate that the use of plasmonic contact electrodes can significantly mitigate the low-quantum efficiency performance of ph...
متن کاملA polarization-insensitive plasmonic photoconductive terahertz emitter
We present a polarization-insensitive plasmonic photoconductive terahertz emitter that uses a two-dimensional array of nanoscale cross-shaped apertures as the plasmonic contact electrodes. The geometry of the cross-shaped apertures is set to maximize optical pump absorption in close proximity to the contact electrodes. The two-dimensional symmetry of the cross-shaped apertures offers a polariza...
متن کاملNumerical Modeling of a Nanostructure Gas Sensor Based on Plasmonic Effect
In the present paper, a nanostructure plasmonic gas sensor based on ringresonator structure at the wavelength range of 0.6-0.9 μm is presented. The plasmonicmaterials/SiO2 with the advantage of high mobility and low loss is utilized as a substratefor structure to obtain some appropriate characteristics for the sensing Performanceparameters. To evaluate the proposed senso...
متن کاملHigh Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays
Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, ...
متن کاملTerahertz emission based on large-area photoconductive emitters illuminated via beam interference
The use of beam interference in combination with a large-area photoconductive emitter for the generation of pulsed terahertz (THz) radiation is presented. An interference pattern with a period twice that of the THz emitter is generated with a transmission phase grating, placed directly in front of the photoconductive emitter. This way, efficient THz generation is achieved with a single metallis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 23 25 شماره
صفحات -
تاریخ انتشار 2015