Combining Genomics, Metabolome Analysis, and Biochemical Modelling to Understand Metabolic Networks

نویسنده

  • Oliver Fiehn
چکیده

Now that complete genome sequences are available for a variety of organisms, the elucidation of gene functions involved in metabolism necessarily includes a better understanding of cellular responses upon mutations on all levels of gene products, mRNA, proteins, and metabolites. Such progress is essential since the observable properties of organisms - the phenotypes - are produced by the genotype in juxtaposition with the environment. Whereas much has been done to make mRNA and protein profiling possible, considerably less effort has been put into profiling the end products of gene expression, metabolites. To date, analytical approaches have been aimed primarily at the accurate quantification of a number of pre-defined target metabolites, or at producing fingerprints of metabolic changes without individually determining metabolite identities. Neither of these approaches allows the formation of an in-depth understanding of the biochemical behaviour within metabolic networks. Yet, by carefully choosing protocols for sample preparation and analytical techniques, a number of chemically different classes of compounds can be quantified simultaneously to enable such understanding. In this review, the terms describing various metabolite-oriented approaches are given, and the differences among these approaches are outlined. Metabolite target analysis, metabolite profiling, metabolomics, and metabolic fingerprinting are considered. For each approach, a number of examples are given, and potential applications are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systems biology, metabolic modelling and metabolomics in drug discovery and development.

Unlike signalling pathways, metabolic networks are subject to strict stoichiometric constraints. Metabolomics amplifies changes in the proteome, and represents more closely the phenotype of an organism. Recent advances enable the production (and computer-readable encoding as SBML) of metabolic network models reconstructed from genome sequences, as well as experimental measurements of much of th...

متن کامل

A global approach to analysis and interpretation of metabolic data for plant natural product discovery.

Discovering molecular components and their functionality is key to the development of hypotheses concerning the organization and regulation of metabolic networks. The iterative experimental testing of such hypotheses is the trajectory that can ultimately enable accurate computational modelling and prediction of metabolic outcomes. This information can be particularly important for understanding...

متن کامل

The Human Metabolome

The human metabolome is best understood by analogy to the human genome, i.e. where the human genome is the set of all genes in a human, the human metabolome is the set of all metabolites in a human. Whereas the science of genomics is based upon a genome, the science of metabolomics is grounded in a metabolome. To continue the genome/metabolome analogy, it should be apparent that any published h...

متن کامل

Metabolomic profiling and genomic analysis of wheat aneuploid lines to identify genes controlling biochemical pathways in mature grain.

Metabolomics is becoming an increasingly important tool in plant genomics to decipher the function of genes controlling biochemical pathways responsible for trait variation. Although theoretical models can integrate genes and metabolites for trait variation, biological networks require validation using appropriate experimental genetic systems. In this study, we applied an untargeted metabolite ...

متن کامل

Cross-fertilization between Proteomics and Computational Synthesis

The problem of designing basic building blocks that self-reproduce, self-assemble, and self-organize into increasingly complex functionalities has already been solved by nature. Proteins are the basic building blocks of biological functionality. The genome, proteome, transcriptome and metabolome interact via regulatory networks, protein interaction networks, and metabolic webs, to build functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comparative and Functional Genomics

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2001