Solving large classes of nonlinear systems of PDEs

نویسندگان

  • Roumen Anguelov
  • Elemér E. Rosinger
چکیده

It is shown that large classes of nonlinear systems of PDEs, with possibly associated initial and/or boundary value problems, can be solved by the method of order completion. The solutions obtained can be assimilated with Hausdorff continuous functions. The usual NavierStokes equations, as well as their various modifications are included as particular cases. The solution method does not involve functional analysis, nor various Sobolev or other spaces of distributions or generalized functions. The general and type independent existence and regularity results regarding solutions presented here are a first in the literature. ”... provided also if need be that the notion of a solution shall be suitably extended ...” cited from Hilbert’s 20th Problem 1. Main ideas of the order completion solution method The solution method is divided in two parts. The proof of the existence of solutions follows the method of order completion introduced and first developed in Oberguggenberger & Rosinger. The proof of the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations

Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...

متن کامل

Arbitrary Continuous Nonlinear PDEs through the Order Completion Method

In 1994 we showed that very large classes of systems of nonlinear PDEs have solutions which can be assimilated with usual measurable functions on the Euclidean domains of definition of the respective equations. Recently, the regularity of such solutions has significantly been improved by showing that they can in fact be assimilated with Hausdorff continuous functions. The method of solution of ...

متن کامل

Solving infinite horizon optimal control problems of nonlinear interconnected large-scale dynamic systems via a Haar wavelet collocation scheme

We consider an approximation scheme using Haar wavelets for solving a class of infinite horizon optimal control problems (OCP's) of nonlinear interconnected large-scale dynamic systems. A computational method based on Haar wavelets in the time-domain is proposed for solving the optimal control problem. Haar wavelets integral operational matrix and direct collocation method are utilized to find ...

متن کامل

A Trust Region Algorithm for Solving Nonlinear Equations (RESEARCH NOTE)

This paper presents a practical and efficient method to solve large-scale nonlinear equations. The global convergence of this new trust region algorithm is verified. The algorithm is then used to solve the nonlinear equations arising in an Expanded Lagrangian Function (ELF). Numerical results for the implementation of some large-scale problems indicate that the algorithm is efficient for these ...

متن کامل

Dressing method based on homogeneous Fredholm equation: quasilinear PDEs in multidimensions

In this paper we develop a dressing method for constructing and solving some classes of matrix quasi-linear Partial Differential Equations (PDEs) in arbitrary dimensions. This method is based on a homogeneous integral equation with a nontrivial kernel, which allows one to reduce the nonlinear PDEs to systems of non-differential (algebraic or transcendental) equations for the unknown fields. In ...

متن کامل

A New Technique of Reduce Differential Transform Method to Solve Local Fractional PDEs in Mathematical Physics

In this manuscript, we investigate solutions of the partial differential equations (PDEs) arising inmathematical physics with local fractional derivative operators (LFDOs). To get approximate solutionsof these equations, we utilize the reduce differential transform method (RDTM) which is basedupon the LFDOs. Illustrative examples are given to show the accuracy and reliable results. Theobtained ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2007