The Class of a Torus in the Grothendieck Ring of Varieties
نویسنده
چکیده
We establish a formula for the classes of certain tori in the Grothendieck ring of varieties, expressing them in terms of the natural lambda-structure on the Grothendieck ring. More explicitly, we will see that if L∗ is the torus of invertible elements in the n-dimensional separable k-algebra L, then the class of L∗ can be expressed as an alternating sum of the images of the spectrum of L under the lambda-operations, multiplied by powers of the Lefschetz class. This formula is suggested from the cohomology of the torus, illustrating a heuristic method that can be used in other situations. To prove the formula will require some rather explicit calculations in the Grothendieck ring. To be able to perform these we introduce a homomorphism from the Burnside ring of the absolute Galois group of k, to the Grothendieck ring of varieties over k. In the process we obtain some information about the structure of the subring generated by zero-dimensional varieties.
منابع مشابه
The Grothendieck Ring of Varieties and of the Theory of Algebraically Closed Fields
In each characteristic, there is a canonical homomorphism from the Grothendieck ring of varieties to the Grothendieck ring of sets definable in the theory of algebraically closed fields. We prove that this homomorphism is an isomorphism in characteristic zero. In positive characteristics, we exhibit specific elements in the kernel of the corresponding homomorphism of Grothendieck semi rings. Th...
متن کاملDestackification and Motivic Classes of Stacks
This thesis consists of three articles treating topics in the theory of algebraic stacks. The first two papers deal with motivic invariants. In the first, we show that the class of the classifying stack BPGLn is the inverse of the class of PGLn in the Grothendieck ring of stacks for n≤ 3. This shows that the multiplicativity relation holds for the universal torsors, although it is known not to ...
متن کاملGraph Hypersurfaces and a Dichotomy in the Grothendieck Ring
The subring of the Grothendieck ring of varieties generated by the graph hypersurfaces of quantum field theory maps to the monoid ring of stable birational equivalence classes of varieties. We show that the image of this map is the copy of Z generated by the class of a point. Thus, the span of the graph hypersurfaces in the Grothendieck ring is nearly killed by setting the Lefschetz motive L to...
متن کاملAlgebro-geometric Feynman Rules
We give a general procedure to construct algebro-geometric Feynman rules, that is, characters of the Connes–Kreimer Hopf algebra of Feynman graphs that factor through a Grothendieck ring of immersed conical varieties, via the class of the complement of the affine graph hypersurface. In particular, this maps to the usual Grothendieck ring of varieties, defining motivic Feynman rules. We also con...
متن کاملLECTURE 8. THE GROTHENDIECK RING OF VARIETIES AND KAPRANOV’S MOTIVIC ZETA FUNCTION In this lecture we give an introduction to the Grothendieck ring of algebraic varieties, and discuss Kapranov’s lifting of the Hasse-Weil zeta function to this Grothendieck ring
In this lecture we give an introduction to the Grothendieck ring of algebraic varieties, and discuss Kapranov’s lifting of the Hasse-Weil zeta function to this Grothendieck ring. One interesting feature is that this makes sense over an arbitrary field. We will prove the rationality of Kapranov’s zeta function for curves by a variant of the argument used in Lecture 4 for the Hasse-Weil zeta func...
متن کامل