Relative Invasion Risk for Plankton across Marine and Freshwater Systems: Examining Efficacy of Proposed International Ballast Water Discharge Standards
نویسندگان
چکیده
Understanding the implications of different management strategies is necessary to identify best conservation trajectories for ecosystems exposed to anthropogenic stressors. For example, science-based risk assessments at large scales are needed to understand efficacy of different vector management approaches aimed at preventing biological invasions associated with commercial shipping. We conducted a landscape-scale analysis to examine the relative invasion risk of ballast water discharges among different shipping pathways (e.g., Transoceanic, Coastal or Domestic), ecosystems (e.g., freshwater, brackish and marine), and timescales (annual and per discharge event) under current and future management regimes. The arrival and survival potential of nonindigenous species (NIS) was estimated based on directional shipping networks and their associated propagule pressure, environmental similarity between donor-recipient ecosystems (based on salinity and temperature), and effects of current and future management strategies (i.e., ballast water exchange and treatment to meet proposed international biological discharge standards). Our findings show that current requirements for ballast water exchange effectively reduce invasion risk to freshwater ecosystems but are less protective of marine ecosystems because of greater environmental mismatch between source (oceanic) and recipient (freshwater) ecoregions. Future requirements for ballast water treatment are expected to reduce risk of zooplankton NIS introductions across ecosystem types but are expected to be less effective in reducing risk of phytoplankton NIS. This large-scale risk assessment across heterogeneous ecosystems represents a major step towards understanding the likelihood of invasion in relation to shipping networks, the relative efficacy of different invasion management regimes and seizing opportunities to reduce the ecological and economic implications of biological invasions.
منابع مشابه
Per capita invasion probabilities: an empirical model to predict rates of invasion via ballast water.
Ballast water discharges are a major source of species introductions into marine and estuarine ecosystems. To mitigate the introduction of new invaders into these ecosystems, many agencies are proposing standards that establish upper concentration limits for organisms in ballast discharge. Ideally, ballast discharge standards will be biologically defensible and adequately protective of the mari...
متن کاملApproaches to setting organism-based ballast water discharge standards.
As a vector by which foreign species invade coastal and freshwater waterbodies, ballast water discharge from ships is recognized as a major environmental threat. The International Maritime Organization (IMO) drafted an international treaty establishing ballast water discharge standards based on the number of viable organisms per volume of ballast discharge for different organism size classes. C...
متن کاملDetermining the viability of marine protists using a combination of vital, fluorescent stains
Determining the viability of protists and small microzooplankton has long been a focus of studies in marine biology and ecology. It is especially relevant in the issue of shipborne invasive species, and impending international guidelines and various national regulations on the allowable concentrations of organisms in discharged ballast water have spurred the growth of an industry that develops ...
متن کاملEvaluating the response of freshwater organisms to vital staining
The unintentional introduction of nonindigenous species by ballast water discharge is one of the greatest threats to biodiversity in freshwater systems. Proposed international regulations for ballast water management will require enumeration of viable plankton in ballast water. In this study we analyze the efficacy of vital stains in determining viability of freshwater taxa. The efficacy of vit...
متن کاملTemporal modelling of ballast water discharge and ship-mediated invasion risk to Australia
Biological invasions have the potential to cause extensive ecological and economic damage. Maritime trade facilitates biological invasions by transferring species in ballast water, and on ships' hulls. With volumes of maritime trade increasing globally, efforts to prevent these biological invasions are of significant importance. Both the International Maritime Organization and the Australian go...
متن کامل