Gross nitrogen retranslocation within a canopy of Quercus serrata saplings.

نویسنده

  • Miki U Ueda
چکیده

Nitrogen (N) retranslocation within tree canopies has been intensively studied and assumed to function as a one-way process (e.g., from older to newer leaves). However, recent studies have found that both N output and input occur in individual leaves, suggesting that 'gross' N retranslocation exists behind 'net' N retranslocation. In the present study, the amount and direction of gross N retranslocation within a canopy of deciduous oak Quercus serrata Thunb. ex. Murray saplings were investigated. Labeling was conducted with leaves of Q. serrata saplings cultivated under conditions of low-N (LN) or high-N (HN) fertility. Subsequently, N movement within the canopy was traced. Leaves at two different positions in the canopy (top and lateral) were labeled to determine the direction of gross N retranslocation. To detect seasonal differences, the leaf-labeling experiment was conducted twice during the early and late phases of the growing season. In addition, to compare the quantitative importance of gross N retranslocation and root N uptake, the latter was determined by labeling Q. serrata roots. The N-labeling experiment revealed gross N retranslocation among leaves, i.e., from top to lateral, lateral to top and lateral to lateral positions. Gross N retranslocation was quantitatively more important than root uptake, especially for plants cultivated at LN fertility. Season also affected the amount of gross N retranslocation, and these effects differed between LN and HN fertilities. These findings suggest that N allocation within a canopy is controlled dynamically by both gross N output and input. The mechanisms controlling gross N output and input likely function as key determinants of N allocation within a tree canopy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allocation of nitrogen within the crown during leaf expansion in Quercus serrata saplings.

Early season leaf growth requires a large amount of nitrogen, and the amount of N provided for new leaf development has been well tested. Although shoot position within the crown strongly influences leaf properties, little is known about absorbed and remobilized nitrogen allocation in the tree crown. Thus, we investigated differences in the allocation of recently absorbed nitrogen in the tree c...

متن کامل

Relative shoot height and irradiance and the shoot and leaf properties of Quercus serrata saplings.

Effects of relative shoot height and irradiance on shoot and leaf properties of Quercus serrata Thunb. saplings growing in the understory and in gaps were investigated. Photosynthetic photon flux (PPF) at the location of the shoot relative to that in the open (relative PPF; rPPF) and the height of the shoot base relative to tree height (relative height; rHeight) were measured for all current-ye...

متن کامل

Summary Soil nitrogen can alter storage and remobilization of carbon and nitrogen in forest trees

of carbon and nitrogen in forest trees and affect growth responses to elevated carbon dioxide concentration ([CO2]). We investigated these effects in oak saplings (Quercus robur L.) exposed for two years to ambient or twice ambient [CO2] in combination with low(LN, 0.6 mmol N l) or high-nitrogen (HN, 6.1 mmol N l) fertilization. Autumn N retranslocation efficiency from senescing leaves was less...

متن کامل

Through-growth by Pseudotsuga menziesii: A mechanism for change in forest composition without canopy gaps

The currently prevailing view is that saplings require gaps or larger disturbances in order to grow into the canopy. This study documents an exception. In California's Pseudotsuga-mixed hardwood forests, crowns of Pseudotsuga menziesii (Douglas fir) are within those of angiosperm trees (Arbutus menziesii and Quercus species). In the forests we examined, every Pseudotsuga was younger and all but...

متن کامل

Effects of partial defoliation on carbon and nitrogen partitioning and photosynthetic carbon uptake by two-year-old cork oak (Quercus suber) saplings.

At the end of the growing season in late July, 20-month-old cork oak (Quercus suber L.) saplings were partially defoliated (63% of leaf area) to evaluate their ability to recover leaf area after defoliation. At 18 and 127 days after defoliation, changes in starch and nitrogen pools were determined in leaves and perennial organs, and variations in photosynthetic carbon uptake were investigated. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Tree physiology

دوره 32 7  شماره 

صفحات  -

تاریخ انتشار 2012