Local Histograms of Character N-grams for Authorship Attribution
نویسندگان
چکیده
This paper proposes the use of local histograms (LH) over character n-grams for authorship attribution (AA). LHs are enriched histogram representations that preserve sequential information in documents; they have been successfully used for text categorization and document visualization using word histograms. In this work we explore the suitability of LHs over n-grams at the character-level for AA. We show that LHs are particularly helpful for AA, because they provide useful information for uncovering, to some extent, the writing style of authors. We report experimental results in AA data sets that confirm that LHs over character n-grams are more helpful for AA than the usual global histograms, yielding results far superior to state of the art approaches. We found that LHs are even more advantageous in challenging conditions, such as having imbalanced and small training sets. Our results motivate further research on the use of LHs for modeling the writing style of authors for related tasks, such as authorship verification and plagiarism detection.
منابع مشابه
Not All Character N-grams Are Created Equal: A Study in Authorship Attribution
Character n-grams have been identified as the most successful feature in both singledomain and cross-domain Authorship Attribution (AA), but the reasons for their discriminative value were not fully understood. We identify subgroups of character n-grams that correspond to linguistic aspects commonly claimed to be covered by these features: morphosyntax, thematic content and style. We evaluate t...
متن کاملLocal n-grams for Author Identification Notebook for PAN at CLEF 2013
Our approach to the author identification task uses existing authorship attribution methods using local n-grams (LNG) and performs a weighted ensemble. This approach came in third for this year’s competition, using a relatively simple scheme of weights by training set accuracy. LNG models create profiles, consisting of a list of character n-grams that best represent a particular author’s writin...
متن کاملAuthorship Attribution in Portuguese Using Character N-grams
For the Authorship Attribution (AA) task, character n-grams are considered among the best predictive features. In the English language, it has also been shown that some types of character n-grams perform better than others. This paper tackles the AA task in Portuguese by examining the performance of different types of character n-grams, and various combinations of them. The paper also experimen...
متن کاملMaximal Repeats Enhance Substring-based Authorship Attribution
This article tackles the Authorship Attribution task according to the language independence issue. We propose an alternative of variable length character n-grams features in supervised methods: maximal repeats in strings. When character ngrams are by essence redundant, maximal repeats are a condensed way to represent any substring of a corpus. Our experiments show that the redundant aspect of n...
متن کاملAuthorship Attribution in Bengali Language
We describe Authorship Attribution of Bengali literary text. Our contributions include a new corpus of 3,000 passages written by three Bengali authors, an end-toend system for authorship classification based on character n-grams, feature selection for authorship attribution, feature ranking and analysis, and learning curve to assess the relationship between amount of training data and test accu...
متن کامل