Optimality conditions and duality results of the nonlinear programming problems under (p, r)-invexity on differentiable manifolds

نویسندگان

  • Shreyasi Jana
  • Chandal Nahak
چکیده

The main purpose of this paper is to study a pair of optimization problems on differentiable manifolds under (p, r)-invexity assumptions. By using the (p, r)-invexity assumptions on the functions involved, optimality conditions and duality results (Mond-Weir, Wolfe and mixed type) are established on differentiable manifolds. We construct counterexample to justify that our investigations are more general than the existing work available in the literature. M.S.C. 2010: 26B25, 58A05, 58B20, 90C26, 90C46.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sufficiency and Duality in Minimax Fractional Programming with Generalized (φ, Ρ)-invexity

Amongst various important applications, one important application of nonlinear programming is to maximize or minimize the ratio of two functions, commonly called fractional programming. The characteristics of fractional programming problems have been investigated widely [1, 6, 10] and [13]. In noneconomic situations, fractional programming problems arisen in information theory, stochastic progr...

متن کامل

Sufficiency and Duality in Control Problems with Generalized Invexity

Sufficient optimality criteria are derived for a control problem under generalized invexity. A Mond-Weir type dual to the control problem is proposed and various duality theorems are validated under generalized invexity assumptions on functionals appearing in the problems. It is pointed out that these results can be applied to the control problem with free boundary conditions and have linkage w...

متن کامل

Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions

In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...

متن کامل

Nonsmooth Continuous-Time Multiobjective Optimization Problems with Invexity

A few Karush-Kuhn-Tucker type of sufficient optimality conditions are given in this paper for nonsmooth continuous-time nonlinear multi-objective optimization problems in the Banach space L∞ [0, T ] of all n-dimensional vector-valued Lebesgue measurable functions which are essentially bounded, using Clarke regularity and generalized convexity. Further, we establish duality theorems for Wolfe an...

متن کامل

Sufficiency and duality for a nonsmooth vector optimization problem with generalized $alpha$-$d_{I}$-type-I univexity over cones‎

In this paper, using Clarke’s generalized directional derivative and dI-invexity we introduce new concepts of nonsmooth K-α-dI-invex and generalized type I univex functions over cones for a nonsmooth vector optimization problem with cone constraints. We obtain some sufficient optimality conditions and Mond-Weir type duality results under the foresaid generalized invexity and type I cone-univexi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014