Evolutionarily conserved glycan signal to degrade aberrant brassinosteroid receptors in Arabidopsis.
نویسندگان
چکیده
Asparagine-linked glycans (N-glycans) are crucial signals for protein folding, quality control, and endoplasmic reticulum (ER)-associated degradation (ERAD) in yeast and mammals. Although similar ERAD processes were reported in plants, little is known about their biochemical mechanisms, especially their relationships with N-glycans. Here, we show that a missense mutation in the Arabidopsis EMS-mutagenized bri1 suppressor 3 (EBS3) gene suppresses a dwarf mutant, bri1-9, the phenotypes of which are caused by ER retention and ERAD of a brassinosteroid receptor, BRASSINOSTEROID-INSENSITIVE 1 (BR1). EBS3 encodes the Arabidopsis ortholog of the yeast asparagine-linked glycosylation 9 (ALG9), which catalyzes the ER luminal addition of two terminal α1,2 mannose (Man) residues in assembling the three-branched N-glycan precursor [glucose(Glc)](3)(Man)(9)[N-acetylglucosamine(GlcNAc)](2). Consistent with recent discoveries revealing the importance of the Glc(3)Man(9)GlcNAc(2) C-branch in generating an ERAD signal, the ebs3-1 mutation prevents the Glc(3)Man(9)GlcNAc(2) assembly and inhibits the ERAD of bri1-9. By contrast, overexpression of EBS4 in ebs3-1 bri1-9, which encodes the Arabidopsis ortholog of the yeast ALG12 catalyzing the ER luminal α1,6 Man addition, adds an α1,6 Man to the truncated N-glycan precursor accumulated in ebs3-1 bri1-9, promotes the bri1-9 ERAD, and neutralizes the ebs3-1 suppressor phenotype. Furthermore, a transfer (T)-DNA insertional alg3-T2 mutation, which causes accumulation of an even smaller N-glycan precursor carrying a different exposed α1,6 Man, promotes the ERAD of bri1-9 and enhances its dwarfism. Taken together, our results strongly suggest that the glycan signal to mark an ERAD client in Arabidopsis is likely conserved to be an α1,6 Man-exposed N-glycan.
منابع مشابه
Mutations of an alpha1,6 mannosyltransferase inhibit endoplasmic reticulum-associated degradation of defective brassinosteroid receptors in Arabidopsis.
Asn-linked glycans, or the glycan code, carry crucial information for protein folding, transport, sorting, and degradation. The biochemical pathway for generating such a code is highly conserved in eukaryotic organisms and consists of ordered assembly of a lipid-linked tetradeccasaccharide. Most of our current knowledge on glycan biosynthesis was obtained from studies of yeast asparagine-linked...
متن کاملThe clathrin adaptor complex AP-2 mediates endocytosis of brassinosteroid insensitive1 in Arabidopsis.
Clathrin-mediated endocytosis (CME) regulates many aspects of plant development, including hormone signaling and responses to environmental stresses. Despite the importance of this process, the machinery that regulates CME in plants is largely unknown. In mammals, the heterotetrameric adaptor protein complex-2 (AP-2) is required for the formation of clathrin-coated vesicles at the plasma membra...
متن کاملA Role for Nonsense-Mediated mRNA Decay in Plants: Pathogen Responses Are Induced in Arabidopsis thaliana NMD Mutants
Nonsense-mediated mRNA decay (NMD) is a conserved mechanism that targets aberrant mRNAs for destruction. NMD has also been found to regulate the expression of large numbers of genes in diverse organisms, although the biological role for this is unclear and few evolutionarily conserved targets have been identified. Expression analyses of three Arabidopsis thaliana lines deficient in NMD reveal t...
متن کاملMarked for Destruction: MANNOSIDASE4 and 5 Process N-Linked Glycans into ER-Associated Degradation Tags.
Elaborate chaperone systems in the endoplasmic reticulum (ER) fold nascent polypeptides and refold misfolded proteins, but if those systems fail or get overwhelmed, the resulting aberrant proteins can be harmful and even toxic to the cell. ER quality control is therefore a critical area of cell biology. Among the quality control mechanisms ensuring that only properly folded proteins are allowed...
متن کاملEBS7 is a plant-specific component of a highly conserved endoplasmic reticulum-associated degradation system in Arabidopsis.
Endoplasmic reticulum (ER)-associated degradation (ERAD) is an essential part of an ER-localized protein quality-control system for eliminating terminally misfolded proteins. Recent studies have demonstrated that the ERAD machinery is conserved among yeast, animals, and plants; however, it remains unknown if the plant ERAD system involves plant-specific components. Here we report that the Arabi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 28 شماره
صفحات -
تاریخ انتشار 2012