Fine Mapping and Candidate Gene Analysis of the Tiller Suppression Gene ts1 in Rice

نویسندگان

  • Lei Liu
  • Fen Meng
  • Yonggang He
  • Menghao Zhu
  • Yanhao Shen
  • Zhihong Zhang
چکیده

Tiller number is one of the key factors that influences rice plant type and yield components. In this study, an EMS-induced rice tiller suppression mutant ts1 was characterized. Morphological and histological observations revealed that, in the ts1 plants, the tiller buds were abnormally formed and therefore cannot outgrow into tillers. With an F2 population derived from a cross between ts1 and an indica cultivar Wushansimiao, a major gene, tiller suppression 1 (ts1) was fine-mapped to a 108.5 kb genomic region between markers ID8378 and SSR6884 on the short arm of rice chromosome 2. Candidate gene analysis identified nineteen putative genes. Among them, ORF4 (LOC_Os02g01610) is a PPR gene which harbored a point mutation c.+733/C→T in ts1 mutant plants. A co-dominant SNP marker cd-733C/T was subsequently developed and the SNP assay demonstrated that the point mutation co-segregated with tiller suppression phenotype. Quantitative RT-PCR analysis showed that the expression level of ORF4 in ts1 plants was significantly lower than that in their wild plants, and the expression of rice tillering regulators MOC1 and HTD1 was also significantly decreased in ts1 plants. Our data indicated that ORF4 was a strong candidate gene for ts1 and ts1 might play a role in regulating rice tillering through MOC1 and HTD1 associated pathway. The results above provide a basis for further functional characterization of ts1 and will shed light on molecular mechanism of rice tillering. The informative SNP marker cd-733C/T will facilitate marker-assisted selection of ts1 in rice plant type breeding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fine mapping and candidate gene analysis of qTAC8, a major quantitative trait locus controlling tiller angle in rice (Oryza sativa L.)

Rice tiller angle is an important agronomic trait that contributes to crop production and plays a vital role in high yield breeding. In this study, a recombinant inbred line (RIL) population derived from the cross of a glabrous tropical japonica rice D50 and an indica rice HB277, was used to investigate quantitative trait loci (QTLs) controlling rice tiller angle. Two major QTLs, qTAC8 and qTAC...

متن کامل

Genetic and Molecular Dissection of Blast Resistance in Rice Using RFLP, Simple Sequence Repeats and Defense-Related Candidate Gene Markers

Blast, Pyricularia grisea (Cooke) Sacc., is one of the most destructive diseases of rice worldwide and canresult in significant reductions in yield. The use of resistant cultivars is the most economical and effectiveway of controlling rice blast. A variety of DNA markers, including plant defense-related candidategene markers are available for genetic characterization and molec...

متن کامل

Mapping and Expression Analysis of a Fusarium Head Blight Resistance Gene Candidate Pleiotropic Drug Resistance 5 (PDR5) in Wheat

Fusarium head blight (FHB) caused by Fusarium graminearum is a serious disease of wheat (Triticum aestivum L.), through which grain quality losses are induced by fungal trichotecene mycotoxins such as deoxynivalenol (DON). A class of plasma membrane localized ABC transporter proteins related to the yeast PDR5 (pleiotropic drug resistance5) efflux pump seems to be responsible for partial resista...

متن کامل

Genetic variation and association analysis of some important traits related to grain in rice (Oryza sativa L.) germplasm

The identification of genomic loci involved in control of quantitative traits receives growing attention in plant molecular breeding. The present study was carried out to evaluate the genetic variability among 48 rice genotypes and determine the genomic regions associated with ten grain related important traits. A total number of 63 alleles were detected by 18 selected SSR markers from differen...

متن کامل

Quantitative Trait Locus Mapping and Candidate Gene Analysis for Plant Architecture Traits Using Whole Genome Re-Sequencing in Rice

Plant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017