Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications.

نویسندگان

  • J Kim
  • P Alizadeh
  • T Harding
  • A Hefner-Gravink
  • D J Klionsky
چکیده

The accumulation of trehalose is a critical determinant of stress resistance in the yeast Saccharomyces cerevisiae. We have constructed a yeast strain in which the activity of the trehalose-hydrolyzing enzyme, acid trehalase (ATH), has been abolished. Loss of ATH activity was accomplished by disrupting the ATH1 gene, which is essential for ATH activity. The delta ath1 strain accumulated greater levels of cellular trehalose and grew to a higher cell density than the isogenic wild-type strain. In addition, the elevated levels of trehalose in the delta ath1 strain correlated with increased tolerance to dehydration, freezing, and toxic levels of ethanol. The improved resistance to stress conditions exhibited by the delta ath1 strain may make this strain useful in commercial applications, including baking and brewing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Survival of genetically modified and self-cloned strains of commercial baker's yeast in simulated natural environments: environmental risk assessment.

Although genetic engineering techniques for baker's yeast might improve the yeast's fermentation characteristics, the lack of scientific data on the survival of such strains in natural environments as well as the effects on human health prevent their commercial use. Disruption of acid trehalase gene (ATH1) improves freeze tolerance, which is a crucial characteristic in frozen-dough baking. In t...

متن کامل

Accumulation of trehalose by overexpression of tps1, coding for trehalose-6-phosphate synthase, causes increased resistance to multiple stresses in the fission yeast schizosaccharomyces pombe

Recent studies have shown that heat shock proteins and trehalose synthesis are important factors in the thermotolerance of the fission yeast Schizosaccharomyces pombe. We examined the effects of trehalose-6-phosphate (trehalose-6P) synthase overexpression on resistance to several stresses in cells of S. pombe transformed with a plasmid bearing the tps1 gene, which codes for trehalose-6P synthas...

متن کامل

MAL62 overexpression and NTH1 deletion enhance the freezing tolerance and fermentation capacity of the baker’s yeast in lean dough

BACKGROUND Trehalose is related to several types of stress responses, especially freezing response in baker's yeast (Saccharomyces cerevisiae). It is desirable to manipulate trehalose-related genes to create yeast strains that better tolerate freezing-thaw stress with improved fermentation capacity, which are in high demand in the baking industry. RESULTS The strain overexpressing MAL62 gene ...

متن کامل

Osmoregulation and salinity tolerance in the Antarctic midge, Belgica antarctica: seawater exposure confers enhanced tolerance to freezing and dehydration.

Summer storms along the Antarctic Peninsula can cause microhabitats of the terrestrial midge Belgica antarctica to become periodically inundated with seawater from tidal spray. As microhabitats dry, larvae may be exposed to increasing concentrations of seawater. Alternatively, as a result of melting snow or following rain, larvae may be immersed in freshwater for extended periods. The present s...

متن کامل

Feeding Artemia larvae with yeast heat shock proteins 82 (HSPs82) to enhance the resistance against abiotic stresses (hyperosmotic and high temperatures)

Feeding farmed Artemia with yeast heat shock proteins is a novel way to protect them from stress conditions during the culture.  In this study, the effect of feeding with stressed new identified Saccharomyces cerevisiae strain YG3-1 yeasts (containing induced heat shock proteins) on the survival of Artemia in stress conditions, was evaluated. For this purpose, heat shock proteins 82 (Hsps 82) o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 62 5  شماره 

صفحات  -

تاریخ انتشار 1996