P-Rex1 and Vav1 cooperate in the regulation of formyl-methionyl-leucyl-phenylalanine-dependent neutrophil responses.
نویسندگان
چکیده
G protein-coupled receptor (GPCR) activation elicits neutrophil responses such as chemotaxis and reactive oxygen species (ROS) formation, which depend on the small G protein Rac and are essential for host defense. P-Rex and Vav are two families of guanine-nucleotide exchange factors (GEFs) for Rac, which are activated through distinct mechanisms but can both control GPCR-dependent neutrophil responses. It is currently unknown whether they play specific roles or whether they can compensate for each other in controlling these responses. In this study, we have assessed the function of neutrophils from mice deficient in P-Rex and/or Vav family GEFs. We found that both the P-Rex and the Vav family are important for LPS priming of ROS formation, whereas particle-induced ROS responses and cell spreading are controlled by the Vav family alone. Surprisingly, fMLF-stimulated ROS formation, adhesion, and chemotaxis were synergistically controlled by P-Rex1 and Vav1. These responses were more severely impaired in neutrophils lacking both P-Rex1 and Vav1 than those lacking the entire P-Rex family, the entire Vav family, or both P-Rex1 and Vav3. P-Rex1/Vav1 (P1V1) double-deficient cells also showed the strongest reduction in fMLF-stimulated activation of Rac1 and Rac2. This reduction in Rac activity may be sufficient to cause the defects observed in fMLF-stimulated P1V1 neutrophil responses. Additionally, Mac-1 surface expression was reduced in P1V1 cells, which might contribute further to defects in responses involving integrins, such as GPCR-stimulated adhesion and chemotaxis. We conclude that P-Rex1 and Vav1 together are the major fMLFR-dependent Dbl family Rac-GEFs in neutrophils and cooperate in the control of fMLF-stimulated neutrophil responses.
منابع مشابه
The hemopoietic Rho/Rac guanine nucleotide exchange factor Vav1 regulates N-formyl-methionyl-leucyl-phenylalanine-activated neutrophil functions.
Vav1 is a hemopoietic-specific Rho/Rac guanine nucleotide exchange factor that plays a prominent role in responses to multisubunit immune recognition receptors in lymphoid cells, but its contribution to regulation of neutrophil functions is unknown. Activated Rho family GTPases are critical participants in neutrophil signaling cascades initiated by binding of FMLP and other chemoattractants to ...
متن کاملEosinophil migration in atopic dermatitis. I: Increased migratory responses to N-formyl-methionyl-leucyl-phenylalanine, neutrophil-activating factor, platelet-activating factor, and platelet factor 4.
Eosinophil granular protein deposits have been demonstrated in lesional atopic dermatitis skin. This suggests active tissue infiltration of eosinophils. To find an explanation for the tissue influx of eosinophils, eosinophil migration was studied in vitro by means of a microchemotaxis assay. Eosinophils from the circulation of patients with atopic dermatitis showed an altered capacity to respon...
متن کاملThe Src family kinases Hck and Fgr regulate neutrophil responses to N-formyl-methionyl-leucyl-phenylalanine.
The chemotactic peptide formyl-methionyl-leucyl-phenilalanine (fMLP) triggers intracellular protein tyrosine phosphorylation leading to neutrophil activation. Deficiency of the Src family kinases Hck and Fgr have previously been found to regulate fMLP-induced degranulation. In this study, we further investigate fMLP signaling in hck-/-fgr-/- neutrophils and find that they fail to activate a res...
متن کاملCarcinoembryonic antigen inhibits neutrophil activation by N-formyl-methionyl-leucyl-phenylalanine
Carcinoembryonic antigen (CEA) is a surface glycoprotein expressed in human epithelial cells and is released from their surface, especially during colorectal cancer. Frequently, colorectal cancer is accompanied by inflammation, where tumor-infiltrating neutrophils play an important role. CEA was also found to be a strong chemotactic agent for neutrophils. The purpose of this study was to find o...
متن کاملMild hyperthermia down-regulates receptor-dependent neutrophil function.
Mild hypothermia impairs resistance to infection and, reportedly, impairs phagocytosis and oxidative killing of unopsonized bacteria. We evaluated various functions at 33 degrees-41 degrees C in neutrophils taken from volunteers. Adhesion on endothelial cells was determined using light microscopy. Adhesion molecule expression and receptors, phagocytosis, and release of reactive oxidants were as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 186 3 شماره
صفحات -
تاریخ انتشار 2011