Classification with Costly Features using Deep Reinforcement Learning
نویسندگان
چکیده
We study a classification problem where each feature can be acquired for a cost and the goal is to optimize the trade-off between classification precision and the total feature cost. We frame the problem as a sequential decision-making problem, where we classify one sample in each episode. At each step, an agent can use values of acquired features to decide whether to purchase another one or whether to classify the sample. We use vanilla Double Deep Q-learning, a standard reinforcement learning technique, to find a classification policy. We show that this generic approach outperforms Adapt-Gbrt, currently the best-performing algorithm developed specifically for classification with costly features.
منابع مشابه
Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملLearning Visual Servoing with Deep Features and Fitted Q-Iteration
Visual servoing involves choosing actions that move a robot in response to observations from a camera, in order to reach a goal configuration in the world. Standard visual servoing approaches typically rely on manually designed features and analytical dynamics models, which limits their generalization capability and often requires extensive application-specific feature and model engineering. In...
متن کاملPorosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation
The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types ...
متن کاملClassification of Brain Tumor by Combination of Pre-Trained VGG16 CNN
In recent years, brain tumors become the leading cause of death in the world. Detection and rapid classification of this tumor are very important and may indicate the likely diagnosis and treatment strategy. In this paper, we propose deep learning techniques based on the combinations of pre-trained VGG-16 CNNs to classify three types of brain tumors (i.e., meningioma, glioma, and pituitary tumo...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.07364 شماره
صفحات -
تاریخ انتشار 2017