Observations of thermal creep gas flow and dust-density waves in dusty plasma experiments
نویسنده
چکیده
In laboratory experiments, I study strongly-coupled dusty plasma levitated in a glow-discharge plasma. Dusty plasma is an arrangement of small dust particles in a plasma background of electrons, ions, and neutral gas. The dust particles are negatively charged because they collect electrons and ions from the background plasma. Depending on the experimental setup, the plasma’s electric field can help to balance the dust particles against gravity. The high dust charge causes dust particles to repel each other, while confinement forces prevent their escape. The dust particles cannot easily move past one another, and instead organize themselves into highlyordered structures. The neutral gas also plays a key role in these experiments. Depending on the relative motion between gas and dust particles, the neutral gas can either impede dust motion or it can drive the dust into motion. In this thesis, I report the findings of three separate experiments. In the first experiment, I use a spherically-shaped dusty plasma (Yukawa ball) as an indicator of a flow of neutral gas, called thermal creep flow. In the second and third experiments, I study naturally occurring dust-density waves, which propagate within the volume of a dusty plasma that has many horizontal layers. In Ch. 2 of this thesis, I study thermal creep flow (TCF), which is a flow of gas driven by a temperature gradient along a solid boundary. Stripes on a glass box are heated by laser beam absorption, leading to both TCF and a thermophoretic force. A stirring motion of the dust particle suspension is observed. By eliminating all other explanations for this motion, I conclude that TCF at the boundary couples by drag to the bulk gas, causing the bulk gas to flow, thereby stirring the suspension of dust particles. This result provides an experimental verification that TCF in the slip-flow regime causes steady-state gas flow in a confined volume.
منابع مشابه
Modulational instability of dust ion acoustic waves in astrophysical dusty plasmas with non thermal electrons
Propagation of dust ion acoustic waves in plasmas composed of nonthermal distributed electrons and stationary dust particles is investigated. Nonlinear Schrdinger equation is derived to describe small amplitude waves, using the reduction perturbation technique. Modulation instability of dust ion acoustic waves is analysed for this system. Parametric investigation indicates that growth rate of...
متن کاملInvestigation of Dust-Ion Acoustic Waves in a Magnetized Collisional Dusty Plasma with Kappa Distribution Function for Electrons
The propagation of arbitrary amplitude dust ion acoustic waves (DIAWs) in a magnetized collisional dusty plasma including hot electrons, with kappa velocity distribution for electrons, warm ions and dust particles has been studied. In the presence of immobile massive dust particulates, DIAWs have been investigated through the Sagdeev pseudo-potential method. It is demonstrated that the amplitud...
متن کاملGas flow driven by thermal creep in dusty plasma.
Thermal creep flow (TCF) is a flow of gas driven by a temperature gradient along a solid boundary. Here, TCF is demonstrated experimentally in a dusty plasma. Stripes on a glass box are heated by laser beam absorption, leading to both TCF and a thermophoretic force. The design of the experiment allows isolating the effect of TCF. A stirring motion of the dust particle suspension is observed. By...
متن کاملStructure formation and wave phenomena in moderately coupled dusty plasmas
Structure formation and wave phenomena in moderately coupled dusty plasmas." PhD (Doctor of Philosophy) thesis, ABSTRACT Dusty plasmas, defined as plasmas of ions, electrons, neutrals, and charged micron to sub-micron dust particles, support a rich diversity of physical states. These states (ranging from solids to liquids to gas) are determined by the ratio of the Coulomb potential energy betwe...
متن کاملLinear and Nonlinear Dust Acoustic Waves in Quantum Dusty Electron-Positron-Ion Plasma
The behavior of linear and nonlinear dust acoustic waves (DAWs) in an unmagnetized plasma including inertialess electrons and positrons, ions, and mobile positive/negative dust grains are studied. Reductive perturbation method is employed for small and finite amplitude DAWs. To investigate the solitary waves, the Korteweg–de Vries (KdV) equation is derived and the solution is presented. B...
متن کامل