An Optimized Lock Solution Containing Micafungin, Ethanol and Doxycycline Inhibits Candida albicans and Mixed C. albicans – Staphyloccoccus aureus Biofilms
نویسندگان
چکیده
Candida albicans is a major cause of catheter-related bloodstream infections and is associated with high morbidity and mortality. Due to the propensity of C. albicans to form drug-resistant biofilms, the current standard of care includes catheter removal; however, reinsertion may be technically challenging or risky. Prolonged exposure of an antifungal lock solution within the catheter in conjunction with systemic therapy has been experimentally attempted for catheter salvage. Previously, we demonstrated excellent in vitro activity of micafungin, ethanol, and high-dose doxycycline as single agents for prevention and treatment of C. albicans biofilms. Thus, we sought to investigate optimal combinations of micafungin, ethanol, and/or doxycycline as a lock solution. We performed two- and three-drug checkerboard assays to determine the in vitro activity of pairwise or three agents in combination for prevention or treatment of C. albicans biofilms. Optimal lock solutions were tested for activity against C. albicans clinical isolates, reference strains and polymicrobial C. albicans-S. aureus biofilms. A solution containing 20% (v/v) ethanol, 0.01565 μg/mL micafungin, and 800 μg/mL doxycycline demonstrated a reduction of 98% metabolic activity and no fungal regrowth when used to prevent fungal biofilm formation; however there was no advantage over 20% ethanol alone. This solution was also successful in inhibiting the regrowth of C. albicans from mature polymicrobial biofilms, although it was not fully bactericidal. Solutions containing 5% ethanol with low concentrations of micafungin and doxycycline demonstrated synergistic activity when used to prevent monomicrobial C. albicans biofilm formation. A combined solution of micafungin, ethanol and doxycycline is highly effective for the prevention of C. albicans biofilm formation but did not demonstrate an advantage over 20% ethanol alone in these studies.
منابع مشابه
In vitro efficacies of caspofungin or micafungin catheter lock solutions on Candida albicans biofilm growth.
OBJECTIVES Caspofungin and micafungin belong to the echinocandins; the mechanism of action of echinocandins is based on the inhibition of (1,3)-beta-D-glucan synthase. The aim of this study was to investigate in vitro the optimal antifungal lock treatment details against a Candida albicans biofilm. METHODS An in vitro model of a C. albicans (ATCC 3153 or ATCC 66396) biofilm associated with 10...
متن کاملIn vitro interactions between farnesol and fluconazole, amphotericin B or micafungin against Candida albicans biofilms.
OBJECTIVES Biofilm formation by Candida albicans poses an important therapeutic challenge in human diseases. Typically, conventional antifungal agents encounter difficulty in treating and fully eradicating biofilm-related infections. Novel therapeutic approaches are needed to treat recalcitrant Candida biofilms. Farnesol is a quorum-sensing molecule, which induces apoptosis, inhibits Ras protei...
متن کاملIn vitro analyses of ethanol activity against Candida albicans biofilms.
Candida albicans is a common cause of catheter-related bloodstream infections (CR-BSI). Ethanol (EtOH) lock therapy has been attempted despite limited data on optimal dose and duration. Concentrations of 35% EtOH or higher for a minimum of 4 h demonstrated a >99% reduction in mature C. albicans biofilm metabolic activity and prevented regrowth. Concentrations of 10% EtOH or higher reduced C. al...
متن کاملProstaglandin E2 from Candida albicans Stimulates the Growth of Staphylococcus aureus in Mixed Biofilms
BACKGROUND Previous studies showed that Staphylococcus aureus and Candida albicans interact synergistically in dual species biofilms resulting in enhanced mortality in animal models. METHODOLOGY/PRINCIPAL FINDINGS The aim of the current study was to test possible candidate molecules which might mediate this synergistic interaction in an in vitro model of mixed biofilms, such as farnesol, tyro...
متن کاملActivities of systemically administered echinocandins against in vivo mature Candida albicans biofilms developed in a rat subcutaneous model.
This study addresses the effects of micafungin, caspofungin, and anidulafungin against Candida albicans biofilms developed in a subcutaneous catheter rat model system. Doses of 5, 10, and 30 mg/kg (of body weight)/day (the last only for micafungin) were given intravenously for 5, 7, and 10 days. All three echinocandins caused a significant reduction of the Candida cell numbers on the implanted ...
متن کامل