Decoding the SUMO signal.
نویسنده
چکیده
SUMO (small ubiquitin-like modifier) emerged from the shadow of the well-established ubiquitin some 15 years ago when it was shown that a distinct conjugation pathway was responsible for SUMO modification. Since then it has been established that SUMO modifies over a thousand substrates and plays diverse roles in many important biological processes. Recognition of SUMO is mediated by short peptide sequences known as SIMs (SUMO-interaction motifs) that allow effector proteins to engage SUMO-modified substrates. Like ubiquitin, SUMO can form polymeric chains, and these chains can be recognized by proteins containing multiple SIMs. One protein that contains such a sequence of SIMs also contains a RING (really interesting new gene) domain that is the hallmark of a ubiquitin E3 ligase. This ubiquitin ligase known as RNF4 (RING finger protein 4) has the unique property that it can recognize SUMO-modified proteins and target them for ubiquitin-mediated proteolysis. Structural and biochemical analyses of RNF4 has shed light on the long sought after mechanism of ubiquitin transfer and illustrates how its RING domain primes the ubiquitin-loaded E2 for catalysis.
منابع مشابه
Optimum decoder for multiplicative spread spectrum image watermarking with Laplacian modeling
This paper investigates the multiplicative spread spectrum watermarking method for the image. The information bit is spreaded into middle-frequency Discrete Cosine Transform (DCT) coefficients of each block of an image using a generated pseudo-random sequence. Unlike the conventional signal modeling, we suppose that both signal and noise are distributed with Laplacian distribution, because the ...
متن کاملI-34: Steroid Hormone Signalling at the FetomaternalInterface
Background: Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. However, HESCs also abundantly express androgen receptors (AR), yet the role of this member of the superfamily of ligand-dependent transcription factors in the decidual process remains poorly elucidated. Materials a...
متن کاملProtein modification by SUMO.
Small ubiquitin-related modifier (SUMO) family proteins function by becoming covalently attached to other proteins as post-translational modifications. SUMO modifies many proteins that participate in diverse cellular processes, including transcriptional regulation, nuclear transport, maintenance of genome integrity, and signal transduction. Reversible attachment of SUMO is controlled by an enzy...
متن کاملSP-RING for SUMO New Functions Bloom for a Ubiquitin-like Protein
SUMO is covalently linked to a variety of cellular proteins. Three groups now describe related E3-like factors that enhance transfer of SUMO to specific proteins. This family of factors includes proteins important for chromosome condensation, signal transduction, and ion channel biogenesis.
متن کاملSUMO and ubiquitin in the nucleus: different functions, similar mechanisms?
The small ubiquitin-related modifier SUMO posttranslationally modifies many proteins with roles in diverse processes including regulation of transcription, chromatin structure, and DNA repair. Similar to nonproteolytic roles of ubiquitin, SUMO modification regulates protein localization and activity. Some proteins can be modified by SUMO and ubiquitin, but with distinct functional consequences....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 41 2 شماره
صفحات -
تاریخ انتشار 2013