Role of Transmembrane Segment S5 on Gating of Voltage-dependent K+ Channels
نویسندگان
چکیده
The cytoplasmic half of S5 (5'S5) has been identified as part of the inner mouth of the pore based on evidence that mutations in this region greatly alter single channel conductance, 4-aminopyridine (4-AP) block and the rate of channel closing upon repolarization (deactivation). The latter effect, suggestive of a role for 5'S5 in channel gating was investigated in the present study. The biophysical properties of chimeric channels, in which the 5'S5 regions were exchanged between two host channels (Kv2.1 and Kv3.1) that differ in 4-AP sensitivity and deactivation rate, were examined in a Xenopus oocyte expression system. Exchange of 5'S5 between Kv2.1 and Kv3.1 confers steady-state voltage dependence of activation and rates of channel deactivation similar to those of the donor channel. The involvement of voltage-dependent gating was confirmed by the observation that exchanging the 5'S5 segment of Kv2.1 with that of Kv3.1 confers a change from slow to fast deactivation kinetics by accelerating the decay of off-gating charge movement. We suggest that a conformational change that extends from the voltage-sensor in S4 to the region of the pore lined by S5 regulates the stability of the open state. Therefore, the cytoplasmic end of S5, in addition to forming part of the conduction pathway near the inner mouth of the pore, also participates in the conformational rearrangements associated with late steps in channel activation and early steps in deactivation.
منابع مشابه
Role of Transmembrane Segment S5 on Gating of Voltage-dependent K 1 Channels
The cytoplasmic half of S5 (5 9 S5) has been identified as part of the inner mouth of the pore based on evidence that mutations in this region greatly alter single channel conductance, 4-aminopyridine (4-AP) block and the rate of channel closing upon repolarization (deactivation). The latter effect, suggestive of a role for 5 9 S5 in channel gating was investigated in the present study. The bio...
متن کاملVoltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains
Voltage-gated channels open paths for ion permeation upon changes in membrane potential, but how voltage changes are coupled to gating is not entirely understood. Two modules can be recognized in voltage-gated potassium channels, one responsible for voltage sensing (transmembrane segments S1 to S4), the other for permeation (S5 and S6). It is generally assumed that the conversion of a conformat...
متن کاملParticipation of the S4 voltage sensor in the Mg2+-dependent activation of large conductance (BK) K+ channels.
The S4 transmembrane segment is the primary voltage sensor in voltage-dependent ion channels. Its movement in response to changes in membrane potential leads to the opening of the activation gate, which is formed by a separate structural component, the S6 segment. Here we show in voltage-, Ca2+-, and Mg2+-dependent, large conductance K+ channels that the S4 segment participates not only in volt...
متن کاملCollapse of Conductance Is Prevented by a Glutamate Residue Conserved in Voltage-Dependent K+ Channels
Voltage-dependent K(+) channel gating is influenced by the permeating ions. Extracellular K(+) determines the occupation of sites in the channels where the cation interferes with the motion of the gates. When external [K(+)] decreases, some K(+) channels open too briefly to allow the conduction of measurable current. Given that extracellular K(+) is normally low, we have studied if negatively c...
متن کاملThe concerted contribution of the S4-S5 linker and the S6 segment to the modulation of a Kv channel by 1-alkanols.
Gating of voltage-gated K(+) channels (K(v) channels) depends on the electromechanical coupling between the voltage sensor and activation gate. The main activation gate of K(v) channels involves the COOH-terminal section of the S6 segment (S6-b) and the S4-S5 linker at the intracellular mouth of the pore. In this study, we have expanded our earlier work to probe the concerted contribution of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 109 شماره
صفحات -
تاریخ انتشار 1997