Erratum to: General Bahr-Esseen inequalities and their applications

نویسندگان

  • István Fazekas
  • Sándor Pecsora
چکیده

*Correspondence: [email protected] Faculty of Informatics, University of Debrecen, P.O. Box 400, Debrecen, 4002, Hungary 1 Erratum In the publication of this article [], there were two errors. ) The error in Section . Exponential inequalities and their consequences: ‘(a)X(b) = –aI{X < a} +XIa≤ |X| ≤ b + bI{X > b}.’ Should instead read: ‘(a)X(b) = aI{X < a} +XIa≤ X ≤ b + bI{X > b}.’ ) The error in Section . Convergence theorems: ‘A well-knownWLLN for pairwise independent r.v.s is the result of Csörgő, Tandori, and Totik [].’ Should instead read: ‘A well-known SLLN for pairwise independent r.v.s is the result of Csörgő, Tandori, and Totik [].’ This has now been updated in the original article [].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General Bahr-Esseen inequalities and their applications

We study the Bahr-Esseen inequality. We show that the Bahr-Esseen inequality holds with exponent p if it holds with exponent [Formula: see text] for the truncated and centered random variables. The Bahr-Esseen inequality is also true if the truncated random variables are acceptable. We then apply the results to obtain weak and strong laws of large numbers and complete convergence.

متن کامل

New Jensen and Ostrowski Type Inequalities for General Lebesgue Integral with Applications

Some new inequalities related to Jensen and Ostrowski inequalities for general Lebesgue integral are obtained. Applications for $f$-divergence measure are provided as well.

متن کامل

Erratum: Applications of epi-retractable and co-epi-retractable modules

In this errata, we reconsider and modify two propositions and their corollaries which were written on epi-retractable and co-epi-retractable modules.

متن کامل

Berry-Esseen bounds of weighted kernel estimator for a nonparametric regression model based on linear process errors under a LNQD sequence

In this paper, the authors investigate the Berry-Esseen bounds of weighted kernel estimator for a nonparametric regression model based on linear process errors under a LNQD random variable sequence. The rate of the normal approximation is shown as [Formula: see text] under some appropriate conditions. The results obtained in the article generalize or improve the corresponding ones for mixing de...

متن کامل

A Berry-Esseen type bound for the kernel density estimator based on a weakly dependent and randomly left truncated data

In many applications, the available data come from a sampling scheme that causes loss of information in terms of left truncation. In some cases, in addition to left truncation, the data are weakly dependent. In this paper we are interested in deriving the asymptotic normality as well as a Berry-Esseen type bound for the kernel density estimator of left truncated and weakly dependent data.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017