The startle disease mutation Q266H, in the second transmembrane domain of the human glycine receptor, impairs channel gating.

نویسندگان

  • A J Moorhouse
  • P Jacques
  • P H Barry
  • P R Schofield
چکیده

Hyperekplexia (startle disease) results from mutations in the glycine receptor chloride channel that disrupt inhibitory synaptic transmission. The Q266H missense mutation is the only hyperekplexia mutation located in the transmembrane domains of the receptor. Using recombinant expression and patch-clamping techniques, we have investigated the functional properties of this mutation. The ability of glycine and taurine to open the channel was reduced in the mutated channel, as shown by a 6-fold shift in the concentration-response curve for both agonists. This was not accompanied by similar changes in agonist displacement of strychnine binding, suggesting that the mutation affects functions subsequent to ligand binding. Taurine was also converted to a weak partial agonist and antagonized the actions of glycine, consistent with changes in its channel gating efficacy. Because the Q266H mutation is within the pore-forming second transmembrane domain, we tested for a direct interaction with permeating ions. No change in either the cation/anion selectivity ratio or in single channel conductance levels was observed. No differential effects of Zn++, pH, and diethylpyrocarbonate were observed, implying that the histidine side chain is not exposed to the channel lumen. Single-channel recordings revealed a significant reduction in open times in the mutant receptors, at both high and low agonist concentrations, consistent with the open state of the channel being less stable. This study demonstrates that residues within the second transmembrane domain of ligand-gated ion channel receptors, even those whose side chains do not directly interact with permeating ions, can affect the kinetics of channel gating.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contributions of conserved residues at the gating interface of glycine receptors.

Glycine receptors (GlyRs) are chloride channels that mediate fast inhibitory neurotransmission and are members of the pentameric ligand-gated ion channel (pLGIC) family. The interface between the ligand binding domain and the transmembrane domain of pLGICs has been proposed to be crucial for channel gating and is lined by a number of charged and aromatic side chains that are highly conserved am...

متن کامل

Novel GLRA1 missense mutation (P250T) in dominant hyperekplexia defines an intracellular determinant of glycine receptor channel gating.

Missense mutations as well as a null allele of the human glycine receptor alpha1 subunit gene GLRA1 result in the neurological disorder hyperekplexia [startle disease, stiff baby syndrome, Mendelian Inheritance in Man (MIM) #149400]. In a pedigree showing dominant transmission of hyperekplexia, we identified a novel point mutation C1128A of GLRA1. This mutation encodes an amino acid substitutio...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

The α1K276E startle disease mutation reveals multiple intermediate states in the gating of glycine receptors.

Loss-of-function mutations in human glycine receptors cause hyperekplexia, a rare inherited disease associated with an exaggerated startle response. We have studied a human disease mutation in the M2-M3 loop of the glycine receptor α1 subunit (K276E) using direct fitting of mechanisms to single-channel recordings with the program HJCFIT. Whole-cell recordings from HEK293 cells showed the mutati...

متن کامل

A Kir6.2 Pore Mutation Causes Inactivation of ATP-Sensitive Potassium Channels by Disrupting PIP2-Dependent Gating

In the absence of intracellular nucleotides, ATP-sensitive potassium (KATP) channels exhibit spontaneous activity via a phosphatidylinositol-4,5-bisphosphate (PIP2)-dependent gating process. Previous studies show that stability of this activity requires subunit-subunit interactions in the cytoplasmic domain of Kir6.2; selective mutagenesis and disease mutations at the subunit interface result i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 55 2  شماره 

صفحات  -

تاریخ انتشار 1999