Augmented Lagrangian Methods for p-Harmonic Flows with the Generalized Penalization Terms and Application to Image Processing
نویسندگان
چکیده
Augmented Lagrangian Methods for p-Harmonic Flows with the Generalized Penalization Terms and Application to Image Processing Huibin Chang and Xue-Cheng Tai2,∗ 1 School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387; Department of Mathematics, East China Normal University, Shanghai 200241, China. 2 Department of Mathematics, University of Bergen, Johaness Brunsgate 12, Bergen 5007, Norway.
منابع مشابه
Augmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems
One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...
متن کاملA Unified Augmented Lagrangian Approach to Duality and Exact Penalization
In this paper, the existence of an optimal path and its convergence to the optimal set of a primal problem of minimizing an extended real-valued function are established via a generalized augmented Lagrangian and corresponding generalized augmented Lagrangian problems, in which no convexity is imposed on the augmenting function. These results further imply a zero duality gap property between th...
متن کاملImage Restoration by Variable Splitting based on Total Variant Regularizer
The aim of image restoration is to obtain a higher quality desired image from a degraded image. In this strategy, an image inpainting method fills the degraded or lost area of the image by appropriate information. This is performed in such a way so that the obtained image is undistinguishable for a casual person who is unfamiliar with the original image. In this paper, different images are degr...
متن کاملFinite Element Solutions of Cantilever and Fixed Actuator Beams Using Augmented Lagrangian Methods
In this paper we develop a numerical procedure using finite element and augmented Lagrangian meth-ods that simulates electro-mechanical pull-in states of both cantilever and fixed beams in microelectromechanical systems (MEMS) switches. We devise the augmented Lagrangian methods for the well-known Euler-Bernoulli beam equation which also takes into consideration of the fringing effect of electr...
متن کاملOn p-Harmonic Map Heat Flows for 1<=p<∞ and Their Finite Element Approximations
Motivated by emerging applications from imaging processing, the heat flow of a generalized p-harmonic map into spheres is studied for the whole spectrum, 1 ≤ p <∞, in a unified framework. The existence of global weak solutions is established for the flow using the energy method together with a regularization and a penalization technique. In particular, a BV -solution concept is introduced and t...
متن کامل