Measurement of variability dynamics in cortical spike trains.
نویسندگان
چکیده
We propose a method for the time-resolved joint analysis of two related aspects of single neuron variability, the spiking irregularity measured by the squared coefficient of variation (CV(2)) of the ISIs and the trial-by-trial variability of the spike count measured by the Fano factor (FF). We provide a calibration of both estimators using the theory of renewal processes, and verify it for spike trains recorded in vitro. Both estimators exhibit a considerable bias for short observations that count less than about 5-10 spikes on average. The practical difficulty of measuring the CV(2) in rate modulated data can be overcome by a simple procedure of spike train demodulation which was tested in numerical simulations and in real spike trains. We propose to test neuronal spike trains for deviations from the null-hypothesis FF=CV(2). We show that cortical pyramidal neurons, recorded under controlled stationary input conditions in vitro, comply with this assumption. Performing a time-resolved joint analysis of CV(2) and FF of a single unit recording from the motor cortex of a behaving monkey we demonstrate how the dynamic change of their quantitative relation can be interpreted with respect to neuron intrinsic and extrinsic factors that influence cortical variability in vivo. Finally, we discuss the effect of several additional factors such as serial interval correlation and refractory period on the empiric relation of FF and CV(2).
منابع مشابه
Dynamics of Membrane Excitability Determine Inter-Spike Interval Variability: A Link Between Spike Generation Mechanisms and Cortical Spike Train Statistics
We propose a biophysical mechanism for the high interspike interval variability observed in cortical spike trains. The key lies in the nonlinear dynamics of cortical spike generation, which are consistent with type I membranes where saddle-node dynamics underlie excitability (Rinzel & Ermentrout, 1989). We present a canonical model for type I membranes, the theta-neuron. The theta-neuron is a p...
متن کاملBeyond Poisson: Increased Spike-Time Regularity across Primate Parietal Cortex
Cortical areas differ in their patterns of connectivity, cellular composition, and functional architecture. Spike trains, on the other hand, are commonly assumed to follow similarly irregular dynamics across neocortex. We examined spike-time statistics in four parietal areas using a method that accounts for nonstationarities in firing rate. We found that, whereas neurons in visual areas fire ir...
متن کاملBalanced neural architecture and the idling brain
A signature feature of cortical spike trains is their trial-to-trial variability. This variability is large in the spontaneous state and is reduced when cortex is driven by a stimulus or task. Models of recurrent cortical networks with unstructured, yet balanced, excitation and inhibition generate variability consistent with evoked conditions. However, these models produce spike trains which la...
متن کاملInformation transmission with spiking Bayesian neurons
Spike trains of cortical neurons resulting from repeated presentations of a stimulus are variable and exhibit Poisson-like statistics. Many models of neural coding therefore assumed that sensory information is contained in instantaneous firing rates, not spike times. Here, we ask how much information about time-varying stimuli can be transmitted by spiking neurons with such input and output var...
متن کاملReliability of spike timing in neocortical neurons.
It is not known whether the variability of neural activity in the cerebral cortex carries information or reflects noisy underlying mechanisms. In an examination of the reliability of spike generation using recordings from neurons in rat neocortical slices, the precision of spike timing was found to depend on stimulus transients. Constant stimuli led to imprecise spike trains, whereas stimuli wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience methods
دوره 169 2 شماره
صفحات -
تاریخ انتشار 2008