Optical wireless localization
نویسندگان
چکیده
In this paper, we explore the possibility of using directionality of free-space-optical (a.k.a. optical wireless) communications for solving the 3-D localization problem in ad-hoc networking environments. Range-based localization methods either require a higher node density (i.e., at least three other localized neighbors must exist) than required for assuring connectedness or a high-accuracy power-intensive ranging device such as a sonar or laser range finder which exceeds the form factor and power capabilities of a typical ad-hoc node. Our approach exploits the readily available directionality information provided by a physical layer using optical wireless and uses a limited number of GPS-enabled nodes, requiring a very low node density (2-connectedness, independent of the dimension of space) and no ranging technique. We investigate the extent and accuracy of localization with respect to varying node designs (e.g., increased number of transceivers with better directionality) and density of GPS-enabled and ordinary nodes as well as messaging overhead per re-localization. Although denser deployments are desirable for higher accuracy, our method still works well with sparse networks with little message overhead and small number of anchor nodes (as little as 2). We also present a proof-of-concept prototype of our FSO-based localization techniques and show the validity of our approach even with three transceivers per node.
منابع مشابه
Optimizing the Event-based Method of Localization in Wireless Sensor Networks
A Wireless Sensor Network (WSN) is a wireless decentralized structure network consists of many nodes. Nodes can be fixed or mobile. WSN applications typically observe some physical phenomenon through sampling of the environment so determine the location of events is an important issue in WSN. Wireless Localization used to determine the position of nodes. The precise localization in WSNs is a co...
متن کاملImprove range-free localization accuracy in wireless sensor network using DV-hop and zoning
In recent years, wireless sensor networks have drawn great attention. This type of network is composed of a large number of sensor nodes which are able to sense, process and communicate. Besides, they are used in various fields such as emergency relief in disasters, monitoring the environment, military affairs and etc. Sensor nodes collect environmental data by using their sensors and send them...
متن کاملA multi-hop PSO based localization algorithm for wireless sensor networks
A sensor network consists of a large number of sensor nodes that are distributed in a large geographic environment to collect data. Localization is one of the key issues in wireless sensor network researches because it is important to determine the location of an event. On the other side, finding the location of a wireless sensor node by the Global Positioning System (GPS) is not appropriate du...
متن کاملA Rssi Based Localization Algorithm for WSN Using a Mobile Anchor Node
Wireless sensor networks attracting a great deal of research interest. Accurate localization of sensor nodes is a strong requirement in a wide area of applications. In recent years, several techniques have been proposed for localization in wireless sensor networks. In this paper we present a localization scheme with using only one mobile anchor station and received signal strength indicator tec...
متن کاملQuadrature Amplitude Modulation All Optical Orthogonal Frequency Division Multiplexing-dense Wavelength Division Multiplexing-optical Wireless Communication System under Different Weather Conditions
This paper proposes an analytical model for evaluating the performance of dense wavelength division multiplexing (DWDM) for all optical orthogonal frequency division multiplexing (AO-OFDM) optical wireless channel. The investigated performance for proposed system is evaluated for the parameters bit error rate (BER) and Q factor .The constellation diagrams, and bit error rate (BER) of the recei...
متن کاملUnderwater Optical Wireless Communications, Networking, and Localization: A Survey
Underwater wireless communications can be carried out through acoustic, radio frequency (RF), and optical waves. Compared to its bandwidth limited acoustic and RF counterparts, underwater optical wireless communications (UOWCs) can support higher data rates at low latency levels. However, severe aquatic channel conditions (e.g., absorption, scattering, turbulence, etc.) pose great challenges fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Wireless Networks
دوره 18 شماره
صفحات -
تاریخ انتشار 2012