Oxalate consumption by lactobacilli: evaluation of oxalyl-CoA decarboxylase and formyl-CoA transferase activity in Lactobacillus acidophilus.
نویسندگان
چکیده
AIMS This study was undertaken to evaluate the oxalate-degrading activity in several Lactobacillus species widely used in probiotic dairy and pharmaceutical preparations. Functional characterization of oxalyl-CoA decarboxylase and formyl-CoA transferase in Lactobacillus acidophilus was performed in order to assess the possible contribution of Lactobacillus in regulating the intestinal oxalate homeostasis. METHODS AND RESULTS In order to determine the oxalate-degrading ability in 60 Lactobacillus strains belonging to 12 species, a screening was carried out by using an enzymatic assay. A high variability in the oxalate-degrading capacity was found in the different species. Strains of Lact. acidophilus and Lactobacillus gasseri showed the highest oxalate-degrading activity. Oxalyl-CoA decarboxylase and formyl-CoA transferase genes from Lact. acidophilus LA14 were cloned and sequenced. The activity of the recombinant enzymes was assessed by capillary electrophoresis. CONCLUSIONS Strains of Lactobacillus with a high oxalate-degrading activity were identified. The function and significance of Lact. acidophilus LA14 oxalyl-CoA decarboxylase and formyl-CoA transferase in oxalate catabolism were demonstrated. These results suggest the potential use of Lactobacillus strains for the degradation of oxalate in the human gut. SIGNIFICANCE AND IMPACT OF THE STUDY Identification of probiotic strains with oxalate-degrading activity can offer the opportunity to provide this capacity to individuals suffering from an increased body burden of oxalate and oxalate-associated disorders.
منابع مشابه
Transcriptional and functional analysis of oxalyl-coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes from Lactobacillus acidophilus.
Oxalic acid is found in dietary sources (such as coffee, tea, and chocolate) or is produced by the intestinal microflora from metabolic precursors, like ascorbic acid. In the human intestine, oxalate may combine with calcium, sodium, magnesium, or potassium to form less soluble salts, which can cause pathological disorders such as hyperoxaluria, urolithiasis, and renal failure in humans. In thi...
متن کاملStable expression of the oxc and frc genes from Oxalobacter formigenes in human embryo kidney 293 cells: implications for gene therapy of hyperoxaluria.
Hyperoxaluria can lead to multiple pathologic conditions such as recurrent urolithiasis, oxalosis, nephrocalcinosis and even renal failure, but there is no known oxalate-degrading pathway in the human body, and current therapeutic options for patients with hyperoxaluria are limited. Oxalyl-CoA decarboxylase and formyl-CoA transferase are the key enzymes in the oxalate catabolism of Oxalobacter ...
متن کاملFunction and X-Ray crystal structure of Escherichia coli YfdE
Many food plants accumulate oxalate, which humans absorb but do not metabolize, leading to the formation of urinary stones. The commensal bacterium Oxalobacter formigenes consumes oxalate by converting it to oxalyl-CoA, which is decarboxylated by oxalyl-CoA decarboxylase (OXC). OXC and the class III CoA-transferase formyl-CoA:oxalate CoA-transferase (FCOCT) are widespread among bacteria, includ...
متن کاملOxalyl-coenzyme A reduction to glyoxylate is the preferred route of oxalate assimilation in Methylobacterium extorquens AM1.
Oxalate catabolism is conducted by phylogenetically diverse organisms, including Methylobacterium extorquens AM1. Here, we investigate the central metabolism of this alphaproteobacterium during growth on oxalate by using proteomics, mutant characterization, and (13)C-labeling experiments. Our results confirm that energy conservation proceeds as previously described for M. extorquens AM1 and oth...
متن کاملFormyl-coenzyme A (CoA):oxalate CoA-transferase from the acidophile Acetobacter aceti has a distinctive electrostatic surface and inherent acid stability.
Bacterial formyl-CoA:oxalate CoA-transferase (FCOCT) and oxalyl-CoA decarboxylase work in tandem to perform a proton-consuming decarboxylation that has been suggested to have a role in generalized acid resistance. FCOCT is the product of uctB in the acidophilic acetic acid bacterium Acetobacter aceti. As expected for an acid-resistance factor, UctB remains folded at the low pH values encountere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied microbiology
دوره 103 5 شماره
صفحات -
تاریخ انتشار 2007