Phosphodiesterase III inhibitor promotes drainage of cerebrovascular β-amyloid

نویسندگان

  • Takakuni Maki
  • Yoko Okamoto
  • Roxana O Carare
  • Yoshiki Hase
  • Yorito Hattori
  • Cheryl A Hawkes
  • Satoshi Saito
  • Yumi Yamamoto
  • Yasukazu Terasaki
  • Hatsue Ishibashi-Ueda
  • Akihiko Taguchi
  • Ryosuke Takahashi
  • Taihei Miyakawa
  • Raj N Kalaria
  • Eng H Lo
  • Ken Arai
  • Masafumi Ihara
چکیده

OBJECTIVE Brain amyloidosis is a key feature of Alzheimer's disease (AD). It also incorporates cerebrovascular amyloid β (Aβ) in the form of cerebral amyloid angiopathy (CAA) involving neurovascular dysfunction. We have recently shown by retrospective analysis that patients with mild cognitive impairment receiving a vasoactive drug cilostazol, a selective inhibitor of phosphodiesterase (PDE) III, exhibit significantly reduced cognitive decline. Here, we tested whether cilostazol protects against the disruption of the neurovascular unit and facilitates the arterial pulsation-driven perivascular drainage of Aβ in AD/CAA. METHODS We explored the expression of PDE III in postmortem human brain tissue followed by a series of experiments examining the effects of cilostazol on Aβ metabolism in transgenic mice (Tg-SwDI mice) as a model of cerebrovascular β-amyloidosis, as well as cultured neurons. RESULTS We established that PDE III is abnormally upregulated in cerebral blood vessels of AD and CAA subjects and closely correlates with vascular amyloid burden. Furthermore, we demonstrated that cilostazol treatment maintained cerebral hyperemic and vasodilative responses to hypercapnia and acetylcholine, suppressed degeneration of pericytes and vascular smooth muscle cells, promoted perivascular drainage of soluble fluorescent Aβ1-40, and rescued cognitive deficits in Tg-SwDI mice. Although cilostazol decreased endogenous Aβ production in cultured neurons, C-terminal fragment of amyloid precursor protein expression was not altered in cilostazol-treated Tg-SwDI mice. INTERPRETATION The predominant action of cilostazol on Aβ metabolism is likely to facilitate Aβ clearance due to the sustained cerebrovascular function in vivo. Our findings mechanistically demonstrate that cilostazol is a promising therapeutic approach for AD and CAA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Therapeutic Approaches for Alzheimer’s Disease and Cerebral Amyloid Angiopathy

Accumulating evidence has shown a strong relationship between Alzheimer's disease (AD), cerebral amyloid angiopathy (CAA), and cerebrovascular disease. Cognitive impairment in AD patients can result from cortical microinfarcts associated with CAA, as well as the synaptic and neuronal disturbances caused by cerebral accumulations of β-amyloid (Aβ) and tau proteins. The pathophysiology of AD may ...

متن کامل

Molecular Dynamics and Molecular Docking Studies on the Interaction between Four Tetrahydroxy Derivatives of Polyphenyls and Beta Amyloid

Interactions of 3,3',4,4'-tetrahydroxybiphenyl (BPT) and three isomeric 3,3",4,4"-tetrahydroxyterphenyls (OTT, MTT, PTT) with Alzheimer’s amyloid-β peptide (Aβ) were studied by molecular dynamics simulation and molecular docking. Structural parameters such as Root-mean-square derivations (RMSD), radial distribution function (RDF), helix percentage and other physical parameters were obtained. Th...

متن کامل

The Alzheimer's disease peptide β-amyloid promotes thrombin generation through activation of coagulation factor XII.

UNLABELLED Essentials How the Alzheimer's disease (AD) peptide β-amyloid (Aβ) disrupts neuronal function in the disease is unclear. Factor (F) XII initiates blood clotting via FXI, and thrombosis has been implicated in AD. Aβ triggers FXII-dependent FXI and thrombin activation, evidence of which is seen in AD plasma. Aβ-triggered clotting could contribute to neuronal dysfunction in AD and be a ...

متن کامل

The Cerebrovascular Basement Membrane: Role in the Clearance of β-amyloid and Cerebral Amyloid Angiopathy

Cerebral amyloid angiopathy (CAA), the accumulation of β-amyloid (Aβ) peptides in the walls of cerebral blood vessels, is observed in the majority of Alzheimer's disease (AD) brains and is thought to be due to a failure of the aging brain to clear Aβ. Perivascular drainage of Aβ along cerebrovascular basement membranes (CVBMs) is one of the mechanisms by which Aβ is removed from the brain. CVBM...

متن کامل

Taxifolin inhibits amyloid-β oligomer formation and fully restores vascular integrity and memory in cerebral amyloid angiopathy

Cerebral amyloid angiopathy (CAA) induces various forms of cerebral infarcts and hemorrhages from vascular amyloid-β accumulation, resulting in acceleration of cognitive impairment, which is currently untreatable. Soluble amyloid-β protein likely impairs cerebrovascular integrity as well as cognitive function in early stage Alzheimer's disease. Taxifolin, a flavonol with strong anti-oxidative a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2014